Section 23966(8:30-10) Assignment 023 Grading ID Form A Section 23950 (11:30-1) 1. Find the exponential function of the form f ( x ) = a x which passes through the points (0 ,1) and (3,64 ) . A. f ( x ) = 2 x 2. C. f ( x ) = 3 x D. f ( x ) = 4 x Write log6 ( x ) = y in exponential form. A. x = y 6 3. B. f ( x ) = 4 3 x B. x 6 = y C. 6 x = y D. x = 6 y Write 9 x = 81 in logarithm form. A. logx 81 = 9 B. log9 x = 81 C. log9 81 = x D. logx 81 = 9 4. Evaluate the given expression if it is defined. Otherwise, state that it is undefined. ⎛ 1 ⎞ log8 ⎜ ⎟ ⎝ 64 ⎠ 1 A. undefined B. 8 C. D. − 2 8 5. Evaluate the given expression if it is defined. Otherwise, state that it is undefined. log9 (9)4 A. 0 B. 1 C. 9 D. 4 6. Evaluate the given expression if it is defined. Otherwise, state that it is undefined. ln(−5) A. undefined B. 0 C. 1 D. 5 Section 23966(8:30-10) Assignment 023 Grading ID Form A Section 23950 (11:30-1) 7. Evaluate the given expression if it is defined. Otherwise, state that it is undefined. 2log2 (6) A. undefined B. 6 C. 1 D. 0 8. Find the value of x given that log4 ( x + 2) = 2 . A. Undefined C. 16 B. − 2 D. 14 9. Find the range f ( x ) = log3 ( x + 1) + 6 . A. (0, ∞ ) B. (− ∞ , ∞ ) C. (6, ∞ ) D. (− 1.∞ ) 10. Find the domain of f ( x ) = log5 (8 − 9x ) ⎛8 ⎞ A. ⎜ , ∞ ⎟ ⎝9 ⎠ 8⎞ ⎛ B. ⎜ − ∞ , ⎟ 9⎠ ⎝ 11. Rewrite log2 C. (− ∞ , ∞ ) 9⎞ ⎛ D. ⎜ − ∞ , ⎟ 8⎠ ⎝ x 2 ( x − 3) so that your answer does not x 4 (x + 4) contain logarithms of product, quotient or power. A. 2 log2 x + log2 ( x − 3) − 4 log2 x + log2 ( x + 4 ) B. log2 x2 − log2 ( x − 3) + log2 x 4 − log2 ( x + 4 ) C. 2 log2 x + log2 ( x − 3) − 4 log2 x − log2 ( x + 4) D. 2 log2 x + log2 ( x − 3) + 4 log2 x − log2 ( x + 4) 12. Solve for x: log2 ( x ) + log2 ( x − 4) = log2 (12) A. − 2 B. − 2 ,6 C. 6 D. 2
© Copyright 2025 Paperzz