Enhanced Acidic and Catalytic Properties of Modified Sulfonic Acid Resins D R Brown, H E Cross and P F Siril Department of Chemical and Biological Chemistry, University of Huddersfield 1 Homogeneous Acid Catalysts: AlCl3, H2SO4, HF - DISPOSAL!! 2 Heterogeneous Acid Catalysts A) Rigid Solid Acids O O O O O O O O O O O O O O O O OO O O O O O O 1 nm pores X 10 nm pores OK B) Non-Rigid Solid Acids Solvent Gel e.g. Sulfonated Polystyrene Resins SO 3 H SO 3 H Sulfonated polystyrene SO3H [H+] 4.9 mmol g-1 SO3H SO3H CH3 SO3H p-toluenesulfonic acid SO3H [H+] 2.9 mmol g-1 SO3H SO3H SO2 SO3H SO3H SO3H SO3H SO3H [H+] 5.4 mmol g-1 Surface Acidity Characterisation Base Temperature Programmed Desorption Base Adsorption Calorimetry NMR – direct or with probe (eg triethylphosphine) IR – direct or with probe Hammett Indicators (eg dicinnamalacetone pKa -3.0 benzalacetophenone pKa -5.6) Enthalpy of NH3 Adsorption (as a measure of acid site strength) NH3 + Solid-H ∆Hoads (NH3) = -150 kJ mol-1 NH4+…..Solid- Enthalpy of NH3 Adsorption (as a measure of acid site strength) NH3 + Solid-H ∆Hoads (NH3) = -150 kJ mol-1 -∆Ho(PA Solid-) Solid- + ∆Ho(Binding) Solid- + NH4+ H+ ∆HoPA(NH3) = - 860 kJ mol-1 H+ + NH3 NH4+…..Solid- NH4+ 40 30 Heat Flow /mW Heat flow /mW 20 10 0 5000 10000 15000 -10 20000 25000 30000 35000 Time /s -20 Time /s -130 -125 -120 (NH3)/ kJ mol-1 Sulfonated Polystyrene Resins CT-275, -1 ads Hads (NH3) /kJ mol ΔHo 5.40 mmol g -115 -1 CT-375, 5.52 mmol g -1 CT-175, -110 4.90 mmol g -1 -105 SP21-51, -100 1.82 mmol g D4034, 0.74 mmol g -1 AMB15, -1 4.74 mmol g -1 -95 -90 0.0 1.0 2.0 3.0 4.0 Average Coverage /mmol g 5.0 -1 NH3 Coverage /mmol g-1 6.0 SO 3 H SO 3 H Molar enthalpy of adsorption of NH3 vs. amount of NH3 adsorbed on macroporous sulfonated polystyrene beads at 100 OC -130 -125 -120 Hads (NH3) /kJ mol -1 CT-275, 5.40 mmol g -115 -1 CT-375, 5.52 mmol g -1 CT-175, -1 4.90 mmol g -110 -105 SP21-51, -100 1.82 mmol g D4034, 0.74 mmol g -1 AMB15, -1 4.74 mmol g -1 -95 -90 0.0 1.0 2.0 3.0 4.0 -1 Average Coverage /mmol g 5.0 6.0 -130 -125 -120 Hads (NH3) /kJ mol -1 CT-275, 5.40 mmol g -115 -1 CT-375, 5.52 mmol g -1 CT-175, -1 4.90 mmol g -110 -105 SP21-51, -100 1.82 mmol g D4034, -1 0.74 mmol g -1 AMB15, 4.74 mmol g -95 -1 -90 0.0 1.0 2.0 3.0 4.0 5.0 6.0 -1 Average Coverage /mmol g OH Catalyst H + (-H2O) Reaction Rate -2 /10 μmol -1 -1 converted g h + O Specific Activity Selectivity/ [Hexene] [Ether] -3 /10 μmol converted -1 -1 mmol (-SO3H) h ----------------------------------------------------------------------------------------------------------------------Amb15 ([H+] = 4.7 mmol g-1) 2.5 5.3 1.4 CT-175 ([H ] = 4.9 mmol g ) 2.3 4.7 1.0 CT-275 ([H+] = 5.4 mmol g-1) 7.6 14.1 1.4 + -1 Catalyst Reaction Rate -2 /10 μmol converted g-1 h-1 Specific ACTIVITY Selectivity/ [Hexene] [Ether] -3 /10 μmol converted mmol-1(-SO3H) h-1 ---------------------------------------------------------------------------------------------------------------------Amb15 ([H+] = 4.7 mmol g ) 2.5 5.3 1.4 CT-175 ([H+] = 4.9 mmol g ) 2.3 4.7 1.0 CT-275 ([H+] = 5.4 mmol g ) 7.6 14.1 1.4 -1 -1 -1 H II O I O O_ O O H H O+ H _ O O S S O H H O H O O O O+ H H H S H O H O O S S O H H H O O S O O O O H O H H S O O S O O H III NH3 Adsorption from He 1 1.3 -0.1 1.1 -0.2 4 -0.3 6 Amb15 Sulfonated polystyrene A 6 0.9 0.8 9 0.7 st 0.6 11 0.5 13 0.4 Heat flow / mW 1.2 1.0 Heat flow / mW 1 0.0 th -0.4 10 -0.5 B -0.6 -0.7 -0.8 th -0.9 0.3 H-ZSM5 -1.0 th th 0.2 Exo -1.1 0.1 -1.2 th 0.0 0 200 400 th Endo -1.3 600 Time / s 800 1000 1200 0 200 400 600 800 1000 1200 Time / s The shape of the calorimeter signal changes as the solid acid becomes progressively saturated - Signals for pulses 1, 6, 9, 11 and 13. Solvent Gel “Internal Solution” (m) a) Aqueous Titration Microcalorimetry - Hydrated Sulfonated Resins with 0.1 M NaOH solution 2 Heat Flow /mW 0 0 500 Time/min b) NaOH / mmole 0 0.1 0 -4 Δ H neut / kJ o -8 -12 ΔH neut = - 58.0 kJ mol-1 0.2 Liquid Titration Calorimetry ΔHOneut. (NaOH)aq- Sulfonated Polystyrene Resins Dependence on Level of Sulfonation ΔHoneut NaOH(aq) / kJ mol -1 62 60 58 56 54 52 50 0 1 2 3 4 5 Cation Exchange Capacity / mmol g-1 6 Liquid Titration Calorimetry Sulfonated Resins ΔHOneut. (NaOH)aq- vs Concn “Internal Solution” 58 Gel resin Gel resins -1 ΔH neut /kJ mol ΔHOneut. (NaOH)aq /kJ mol-1 54 50 0 1 2 3 4 Internal Solution Concentration /mol kg 5 -1 (water) 6 Concn “Internal Solution” /mol kg-1 Liquid Titration Calorimetry Sulfonated Resins ΔHOneut. (NaOH)aq- vs Concn “Internal Solution” 58 Gel resins /kJ mol ΔH ΔHOneut. (NaOH)aq /kJ mol-1 neut -1 HCl 54 p-TsOH 50 0 2 4 Internal Solution Concentration /mol kg 6 -1 (water) Concn “Internal Solution” /mol kg-1 FT-Raman Spectroscopy - Hydrated Sulfonated Resins (H+ Form) -SO31035 cm-1 Polystyrene 97% sulfonated -SO3H 1127 cm-1 Polystyrene 70% sulfonated Polystyrene 43% sulfonated Polystyrene 24% sulfonated Degree of Acid Dissociation vs Concn of Internal Solution - FT-Raman Data 100 Et-SO3H p-TsOH α /% 50 % Dissociation Gel resins 0 0 2 4 Internal Solution Concentration /mol kg-1 6 Conclusions Sulfonated Polystyrene (Hydrated) High sulfonation = reduced acid dissocation = increased acid strength = higher catalytic activity Effective acid catalysts in water Enhanced acid strength/activity not seen in other supported sulfonic acids Sulfonated polystyrene SO3H Sulfonated silica SO3H SO3H O Et Si FF FF F OH F Si F F F F F F O F F O OH OH Si Si Si Si O F CF3 O F F SO3H F O O Fluorinated polyethylene – “Nafion” O O O + O H H2O Catalyst O + OH ∆ Honeut. + OH Acid Site Concentration /mmol g-1 (aq. NaOH) /kJ mol-1 Polystyrene-SO3H AMB-15 AMB-35 4.74 5.4 -58.3 -61.2 2.5 4.6 Silica-SO3H MCM41-1 MCM41-2 MCM41-3 SBA-15 1.2 1.31 2.8 1.15 -54.6 -54.9 -54.5 -54.9 2.7 2.7 2.7 2.6 - -52.8 -52.4 Aqueous Strong Acids 0.1 mol dm-3 HCl 0.5 mol dm-3 p-TsOH Initial Rate (TON) /mol (acid-mol)-1 min-1 Physical characteristics of Amberlyst resin powders Cation Surface Pore Average pore size exchange areab volumec /nm capacitya /m2 g-1 /cm3 g-1 /mmol g-1 Sulfonated polystyrene resin (≤ 125 μm) Amberlyst 70 Amberlyst 15 Amberlyst 35 a b c 2.55 4.7 5.2 1.0 37.3 40.7 0.002 0.203 0.218 29.3 24.0 24.2 Rohm and Haas data.5 BET adsorption isotherm using N2. Total volume of pores with diameters 1.7-300 nm (BJH). Physical characteristics of Amberlyst resin powders Cation Surface Pore Average pore size exchange areab volumec /nm capacitya /m2 g-1 /cm3 g-1 /mmol g-1 Sulfonated polystyrene resin (≤ 125 μm) Amberlyst 70 Amberlyst 15 Amberlyst 35 a b c 2.55 4.7 5.2 1.0 37.3 40.7 0.002 0.203 0.218 29.3 24.0 24.2 Rohm and Haas data.5 BET adsorption isotherm using N2. Total volume of pores with diameters 1.7-300 nm (BJH). Physical characteristics of Amberlyst resin powders Cation Surface Pore Average pore size exchange areab volumec /nm capacitya /m2 g-1 /cm3 g-1 /mmol g-1 Sulfonated polystyrene resin (≤ 125 μm) Amberlyst 70 Amberlyst 15 Amberlyst 35 a b c 2.55 4.7 5.2 1.0 37.3 40.7 0.002 0.203 0.218 29.3 24.0 24.2 Rohm and Haas data.5 BET adsorption isotherm using N2. Total volume of pores with diameters 1.7-300 nm (BJH). -ΔH0ads/adsorbed NH3 for Amberlyst resins at 100 oC by adsorption calorimetry, sample size 5 mg -ΔH0ads/adsorbed NH3 for Amberlyst resins at 100 oC by adsorption calorimetry, sample size 20 mg Acidity data by NH3 adsorption calorimetry at 100 oC. Sulfonated resin Amberlyst 70 Amberlyst 15 Amberlyst 35 Nafion NR50 a b c Average -ΔH0adsa /kJ mol-1 117 ± 2 110 ± 2 117 ± 2 158 ± 4 Total NH3 adsorbedb /mmol g-1 1.65 ± 0.05 4.70 ± 0.10 5.20 ± 0.10 0.85 ± 0.10 Cation exchange capacityc /mmol g-1 2.55 4.7 5.2 0.8 Average up to coverage where ΔH0ads falls below -80 kJ mol-1. coverage where ΔH0ads falls numerically below -80 kJ mol-1. Rohm and Haas data.5 Acidity data by NH3 adsorption calorimetry at 100 oC. Sulfonated resin Amberlyst 70 Amberlyst 15 Amberlyst 35 Nafion NR50 a b c Average -ΔH0adsa /kJ mol-1 117 ± 2 110 ± 2 117 ± 2 158 ± 4 Total NH3 adsorbedb /mmol g-1 1.65 ± 0.05 4.70 ± 0.10 5.20 ± 0.10 0.85 ± 0.10 Cation exchange capacityc /mmol g-1 2.55 4.7 5.2 0.8 Average up to coverage where ΔH0ads falls below -80 kJ mol-1. coverage where ΔH0ads falls numerically below -80 kJ mol-1. Rohm and Haas data.5 Acidity data by NH3 adsorption calorimetry at 100 oC. Sulfonated resin Amberlyst 70 Amberlyst 15 Amberlyst 35 Nafion NR50 a b c Average -ΔH0adsa /kJ mol-1 117 ± 2 110 ± 2 117 ± 2 158 ± 4 Total NH3 adsorbedb /mmol g-1 1.65 ± 0.05 4.70 ± 0.10 5.20 ± 0.10 0.85 ± 0.10 Cation exchange capacityc /mmol g-1 2.55 4.7 5.2 0.8 Average up to coverage where ΔH0ads falls below -80 kJ mol-1. coverage where ΔH0ads falls numerically below -80 kJ mol-1. Rohm and Haas data.5 Acidity data by NH3 adsorption calorimetry at 100 oC. Sulfonated resin Amberlyst 70 Amberlyst 15 Amberlyst 35 Nafion NR50 a b c Average -ΔH0adsa /kJ mol-1 117 ± 2 110 ± 2 117 ± 2 158 ± 4 Total NH3 adsorbedb /mmol g-1 1.65 ± 0.05 4.70 ± 0.10 5.20 ± 0.10 0.85 ± 0.10 Cation exchange capacityc /mmol g-1 2.55 4.7 5.2 0.8 Average up to coverage where ΔH0ads falls below -80 kJ mol-1. coverage where ΔH0ads falls numerically below -80 kJ mol-1. Rohm and Haas data.5 H3C CH3 CH2 CH3 CH3 + Limonenes CH3 CH2OH + CH3 CH2 CH3 + H2O Reaction rate data Isomerisation of α-pinene (conversion at 100 oC) Benzylation of toluene (conversion of benzyl alcohol at 80 oC) Initial turnover frequency per acid site /h-1 Initial turnover frequency per acid site /h-1 Amberlyst 70 12 17 Amberlyst 15 47 13 Amberlyst 35 112 19 Nafion NR 1325 33 Catalyst H3C CH3 CH2 CH3 CH3 + Limonenes CH3 CH2OH + CH3 CH2 CH3 + H2O Reaction rate data Isomerisation of α-pinene (conversion at 100 oC) Benzylation of toluene (conversion of benzyl alcohol at 80 oC) Initial turnover frequency per acid site /h-1 Initial turnover frequency per acid site /h-1 Amberlyst 70 12 17 Amberlyst 15 47 13 Amberlyst 35 112 19 Nafion NR 1325 33 Catalyst H3C CH3 CH2 CH3 CH3 + Limonenes CH3 CH2OH + CH3 CH2 CH3 + H2O Reaction rate data Isomerisation of α-pinene (conversion at 100 oC) Benzylation of toluene (conversion of benzyl alcohol at 80 oC) Initial turnover frequency per acid site /h-1 Initial turnover frequency per acid site /h-1 Amberlyst 70 12 17 Amberlyst 15 47 13 Amberlyst 35 112 19 Nafion NR 1325 33 Catalyst H3C CH3 CH2 CH3 CH3 + Limonenes CH3 CH2OH + CH3 CH2 CH3 + H2O Reaction rate data Isomerisation of α-pinene (conversion at 100 oC) Benzylation of toluene (conversion of benzyl alcohol at 80 oC) Initial turnover frequency per acid site /h-1 Initial turnover frequency per acid site /h-1 Amberlyst 70 12 17 Amberlyst 15 47 13 Amberlyst 35 112 19 Nafion NR 1325 33 Catalyst Hydrothermal stability of Amberlyst 70 compared to Amberlysts 15, 35 and 36 Acid Site concentration after 6 h hydrothermal 5.5 5.0 Amberlyst 35 Acid Sites (meq/g) 4.5 Amberlyst 15 4.0 3.5 3.0 2.5 Amberlyst 70 2.0 1.5 1.0 0.5 0.0 0 50 100 150 o Temperature ( C) 200 T o t a l a c id s it e c o n c e n t r a t io n a f t e r t h e r m a l t r e a t m e n t ( 2 0 0 ° C % of original total acid concn 1 0 0 8 0 A 3 5 R E A 7 0 A 1 5 B L U E D 6 0 B L A C K 4 0 2 0 0 0 . 0 0 . 2 0 . 4 0 . 6 lo g [ t ] 0 . 8 1 . 0 1 . 2 1 . 4 ) S u lf u r c o n t e n t b y X R F - 2 0 0 ° C h y d r o t h e r m a l Sulfur content (% of original) 1 0 0 8 0 6 0 4 0 A 3 5 A 1 5 R E D A 2 0 B L A C 7 0 B L U E K 0 0 . 0 0 . 2 0 . 4 0 . 6 lo g [ t ] 0 . 8 1 . 0 1 . 2 1 . 4 Acknowledgements EPSRC DTI Royal Society Purolite International Ltd BP University of Huddersfield Howell Edwards, University of Bradford Graham Fuller Colin Park Prem Siril Said Koujout Hannah Cross Flow adsorption calorimeter 1% NH3 in He Automated gas sampling valve Differential Scanning Calorimeter (flow-through cell) He carrier Mass spec α-pinene conversion to camphene at 100 oC H3C CH3 CH2 CH3 CH3 + Limonenes CH3 100 Nafion powder 155 kJ/mol 1.0 mmol/g 80 Amberlyst 35 powder % conversion 125 kJ/mol 5.0 mmol/g 60 40 Silica-SO3H Amberlyst 15 powder 135 kJ/mol 1.0 mmol/g 20 0 0 20 40 60 80 100 120 140 Time / min 160 180 200 220 240 ∆Hoads (NH3) at 100 oC for supported sulfonic acids 160 Nafion 140 Amberlyst 35 100 Amberlyst 15 80 ΔH 0 / kJ mol ads -1 120 60 MCM-41-SO3 H (Silica –SO3H) 40 20 0 1 2 3 4 Surface coverage / mmol g 5 -1 6 Calorimeter signal Time /s Mass spec signal (m/e 15) Heat Flow / mW Output sensitive to the RATE of adsorption Increased probe gas flow rate over sample (reduced contact time) 0.2 Typical data for higher NH3 flow rate -0.2 -0.6 heat -1.0 -1.4 -1.8 17500 22500 27500 -9 37500 Time / s 1.2x10 Intensity of m/z - 15 / arbitary units 32500 Falling STICKING Factor -10 8.0x10 -10 4.0x10 0.0 17500 22500 27500 32500 Time / s 37500 MS signal Acknowledgements Prem Siril Said Koujout Mark Hart Graham Fuller Howell Edwards (Bradford) Adsorption Calorimetry Gas/Vapour on Solid Capacities of adsorbent/catalysts Adsorption enthalpies Adsorption rates Desorption Adsorption Calorimetry Gas/Vapour on Solid Capacities of adsorbent/catalysts Adsorption enthalpies Adsorption rates Desorption Strength/abundance of catalytic sites Calorimeter signal Time /s Mass spec signal (m/e 15)
© Copyright 2026 Paperzz