Math 128 : Calculus 2 for the Sciences Winter 2016 Lecture 4: January 11, 2016 Lecturer: Jen Nelson 4.1 Notes By: Harsh Mistry Half Angle Identities • cos2 x = 12 (1 + cos 2x) • sin2 x = 12 (1 − cos 2x) Example 4.1 Z 0 π 3 Z π 3 1 (1 + cos 2x)dx 2 0 sin 2x π3 1 ) |0 = (x + 2 2 √ cos2 xdx = 3 1 π ( + 2 ) 2 3√ 2 π 3 = + 6 8 = Example 4.2 Z Z 1 sin2 x cos2 xdx = (1 − cos 2x)(1 + cos 2x)dx 4 Z 1 = (1 − cos2 2x) 4 Z 1 1 = (1 − (1 + cos4 x))dx 4 2 Z 1 1 1 = ( − cos 4x) 4 2 2 sin 4x 1 )+C = (x − 8 4 4.2 Integrals Involving Tan and Sec Z tanm x secn xdx, m, n ∈ Z, m, n ≥ 0 4-1 Lecture 4: January 11, 2016 4-2 Known Derivatives d d tan x = sec2 x sec x = sec x tan x dx dx d d tanm x = m tanm−1 x sec2 x secm = n secn−1 x sec x tan x = n secn x tan x dx dx • Try to manipulate expression, so we have tan x or sec2 x • Use identity 1 + tan2 x = sec2 x Example 4.3 Z Z 9 5 sec x tan xdx = Z = Z = Z = Z = sec9 x tan4 x tan xdx sec9 x(sec2 x − 1)2 tan xdx sec9 x(sec 3x − 1)2 tan xdx u8 (u2 − 1)2 du u = sec x =⇒ du = sec x tan x u8 (u4 − 2u2 + 1)du u1 3 2u1 1 u9 − + +C 13 11 8 1 1 sec 3x 2 sec 1x sec9 x − + +C = 13 11 9 = Example 4.4 Z Z sec4 x tan2 xdx = sec 3x tan2 x sec2 xdx Z = (1 + tan2 x) tan 3x sec2 xdx Z = (1 + u2 )u2 du u = tan x =⇒ du = sec2 x u3 u5 + +C 3 5 tan3 x tan5 x = + +C 3 5 = Example 4.5 Z Z 3 sec xdx = sec x tan x − Z = sec x tan x − Z = sec x tan x − Z 1 sec3 xdx = sec x tan x + 2 tan2 x sec xdx (sec2 x − 1) sec xdx Z 3 sec xdx + sec xdx 1 ln | sec x + tan x | +C 2 u = sec x =⇒ du = sec x tan x dv = sec2 xdx =⇒ v = tan x Lecture 4: January 11, 2016 4-3 Note : Integrals involving Cot and Csc share a similar strategy 4.3 Trig Substitution Interested in integrals containing √ √ √ a2 − b2 x2 , a2 + b2 x2 or b2 x2 − a2 Example 4.6 Z 1 √ dx(= arcsin x + C) 1 − x2 Another Way to Solve ( : x = sin β Inverse Subsitution dx = cos βdβ Z Z cos cos β p √ = 2 cos 3x 1 − sin β End of Lecture Notes Notes By : Harsh Mistry
© Copyright 2026 Paperzz