Regents Geometry – Mr. Mezzano Chapter 4.6 Practice C.P.C.T.C. Proofs 1) Name: ________________________ Given: AD DC, AC BD Prove: ABD CBD Statement Reason 1. AD DC, AC BD 2. BDA and BDC are right angles 3. BDA BDC 4. BD BD 5. ∆BDA ∆BDC 6. ABD CBD 1. Given 2. Definition of Perpendicular Lines 3. Right Angles Congruence Theorem 4. Reflexive Property of Congruence 5. SAS Congruence Postulate 6. C.P.C.T.C. 2) Given: SR RP, SRT RPQ , ST || RQ Prove: ST RQ Statement Reason 1. SR RP, SRT RPQ , ST || RQ 2. RST PRQ 3. ∆RST ∆PRQ 4. ST RQ 1. Given 2. Corresponding Angles Postulate 3. ASA Congruence Postulate 4. C.P.C.T.C. 3) Given: AB DC, AD BC Prove: A C Statement Reason 1. AB DC, AD BC 1. Given 2. BD BD 3. ∆ABD ∆CDB 4. A C 2. Reflexive Property of Congruence 3. SSS Congruence Postulate 4. C.P.C.T.C. 4) Given: YX WX ZX bisects YXW Prove: YZ WZ Statement Reason 1. YX WX ZX bisects YXW 2. YXZ WXZ 3. XZ XZ 4. ∆YXZ ∆WXZ 5. YZ WZ 1. Given 5) 2. Definition of Angle Bisectors 3. Reflexive Property of Congruence 4. SAS Congruence Postulate 5. C.P.C.T.C. Given: AC DC, A D Prove: B E Statement Reason 1. AC DC, A D 2. ACB DCE 3. ∆ACB ∆DCE 4. B E 1. Given 2. Vertical Angles Congruence Theorem 3. ASA Congruence Postulate 4. C.P.C.T.C. 6) Given: AB BE , ADB ECB Prove: DB CB Statement Reason 1. AB BE , ADB ECB 2. ABD EBC 3. ∆ABD ∆EBC 4. DB CB 1. Given 2. Vertical Angles Congruence Theorem 3. AAS Congruence Theorem 4. C.P.C.T.C. 7) Given: MQ NT , MQ || NT Prove: MN TQ Statement Reason 1. MQ NT , MQ || NT 2. NQM QNT 1. Given 2. Alternate Interior Angles Theorem 3. NQ NQ 4. ∆NQM ∆QNT 5. MN TQ 3. Reflexive Property of Congruence 4. SAS Congruence Postulate 5. C.P.C.T.C. 8) Given: O is the midpoint of NP N P Prove: O is the midpoint of SR Statement Reason 1. O is the midpoint of NP N P 2. NO OP 3. NOS POR 4. ∆NOS ∆POR 5. SO OR 6. O is the midpoint of SR 1. Given 9) 2. Definition of Midpoint 3. Vertical Angles Congruence Theorem 4. ASA Congruence Postulate 5. C.P.C.T.C. 6. Definition of Midpoint Given: AB CD DAB and BCD are right angles Prove: ADB CBD Statement Reason 1. AB CD DAB and BCD are right angles 2. ∆DAB and ∆BCD are right triangles 3. BD BD 4. ∆DAB ∆BCD 5. ADB CBD 1. Given 2. Definition of Right Triangles 3. Reflexive Property of Congruence 4. HL Congruence Theorem 5. C.P.C.T.C.
© Copyright 2026 Paperzz