Femtosecond lasers: the gears of optical atomic clocks Scott A. Diddams Time & Frequency Division National Institute of Standards and Technology Boulder, Colorado 80305 NIST, Time & Frequency Division: • Optical Frequency Measurements Leo Hollberg Anne Curtis (grad student) Chris Oates Tanya Ramond (post-doc) Isabell Thomann (grad student) Kristan Corwin (post-doc) Nate Newbury • Ion Storage Jim Bergquist Sebastian Bize (post-doc) Bob Drullinger Wayne Itano Windell Oskay (post-doc) Dave Wineland • Atomic Standards Steve Jefferts Tom Heavner Tom Parker Guest Researchers: Albrecht Bartels (U. Aachen) Eugene Ivanov (U. West. Aust.) Long-Sheng Ma (U. Colorado & BIPM) Lennart Robertsson (BIPM) Utako Tanaka (CRL, Japan) Carol Tanner (Notre Dame U.) Thomas Udem (MPQ) Karl Weber (U. Melbourne) Tim Birks (U. of Bath) Robert Windeler (OFS) What Makes a Clock? Oscillator + Earth Rotation Pendulum Quartz Crystal ATOMIC CLOCKS Microwave Transition + Oscillator Optical Transition + Laser Counting Mechanism Sundial Clock Gears/Hands Electronic Counter Electronic Counter Frequency Chain Improvement of Cs microwave standards over 50 years Optical Clocks Why are they interesting? • Optical standards have superior stability: e.g. Ca optical standard ∆f 1 σ (τ ) ~ <2x10-16 at 1 s fo N τ • Optical standards have the potential for greatly improved accuracy: e.g. approaching 1x10-18 for single trapped ions Oscillator Stability Allan Deviation -- Instability σ(τ) Quantum Limited Instability 10 -13 Ca 10 -14 10 -15 10 H-maser σ (τ ) ~ 1 fo N τ Cs Hg+ -16 Ca 10 ∆f 1 day -17 10 -2 10 0 2 10 10 Averaging Time (s) 4 1 month 10 6 Single Hg+ Ion Optical Standard 2P F=1 F=0 1/2 199Hg+ F=3 F=2 2D 5/2 Observe fluorescence (λ = 194 nm) Tprobe = 20 ms “Clock” Transition (λ=282 nm) 2S F=1 1/2 F=0 “clock” transition @ fo ≈ 1.06x1015 Hz Q=1.6×1014 !! J. Bergquist, et al. (NIST) ~ 6.5 Hz Tprobe = 120 ms Single Hg+ ion Femtosecond-Laser-Based Optical Synthesizer • What is it? A device that phase-coherently connects optical and RF/microwave domains. µ-wave in Optical Synthesizer µ-wave out optical in m × n optical out Femtosecond-Laser-Based Synthesizer PZT Control of frep Pump Power Control of fo Output 650 mW frep= 1 GHz AOM 0 +1 -20 Ti:Sapphire Gain Microstructure Fiber input output -30 Relative Power (dB) 5-8 W of 532 nm -40 -50 -60 S.A. Diddams, et al. Proc. SPIE vol. 4269 (200) 600 800 Wavelength (nm) 1000 1200 Optical Clock with a Femtosecond Synthesizer PLL 1 fo fn=fo+nfr fr÷100 f2n=fo+2nfr x2 I(f) Femtosecond Laser + Microstructure Fiber fm PLL 2 fr÷100 fb fr f Optical Standard (fHg ) Clock Output fr = fHg ÷ m (m~106) S. Diddams, et al. Science 293, 825 (2001) fHg/2 - 532 360 804 000 000 (Hz) Comparison of Hg+ Optical Clock to a H-maser 949,700 949,600 949,500 5 s gate time Scatter: 37 Hz 949,400 0 500 1000 1500 2000 Time (s) 2500 3000 8 6 Allan Deviation 4 2 -14 10 8 6 −1/2 τ 4 2 10 -15 1 10 100 Averaging Time (s) 1000 Instability limited by H-maser fHg-1 064 721 609 899 143.4 (Hz) Comparison of Hg+ (optical) to Cs (microwave) 30 20 Weighted Average of all Data: ...899 143.4 (1.0) Hz Original Measurement: ...899 142.6(2.5) PRL 86, 4996 (2001) 10 0 -10 -20 -30 Aug 00 Feb 01 Aug 01 Feb 02 Aug 02 Measurement Date Hg+ -- Cs comparison limits possible variation of α me 6.03 ν Cs α ∝ g Cs m ν Hg p Dzuba, Flambaum, Webb PRA 59, 230 (1999) Present data constrains possible variations of ν Cs ν Hg or to ≤ 7 × 10 −15 yr -1 me α& −15 -1 are assumed constant ≤ 1.1× 10 yr if g Cs and m α p S. Bize, et al. (submitted to Phys. Rev. Letters) Hg-Ca Optical Comparison PLL 1 fo Self-Referencing fCa I(f) Femtosecond Laser + Microstructure Fiber fm PLL 2 fb f Optical Standard (fHg ) Hg+ Standard 180 m fiber Beat Amplitude (a.u.) “Beat” between Hg+ and Ca across 76 THz Millions of Narrow Linewidth Oscillators Femtosecond laser Ca Standard 0.8 0.6 a) 180 m fiber noise -40,000 0.4 0 40,000 Frequency (Hz) 0.2 0.0 -10,000 Beat amplitude (a.u.) 10 m fiber 1.0 1.2 -5,000 0 Frequency (Hz) 5,000 10,000 10 m fiber noise b) 1.0 0.8 0.6 Hg-Ca beat 0.4 0.2 -1,000 -500 0 Frequency (Hz) 500 1,000 Testing the Femtosecond Synthesizer fr1 fo1 fs Comb #1 Diode Laser 456 THz X-Correlation PMT (tests envelope) Jitter: 400 as (1-100 Hz) Stability: <2ä10-15 τ-1 fs Comb #2 fr2 fo2 RF Mixing (tests microwave output) Stability: ~2ä10-14 τ-1 Optical Heterodyne (tests comb teeth) Stability: <6ä10-16 τ-1 Accuracy: <4ä10-17 Allan Deviation Stability of Microwave and Optical Signals 10 -13 10 -14 Nonlinear X-Correlation Photodection + Microwave RF Mixing 2x10 10 -14 −1 τ -15 2x10 10 -16 10 -17 -15 −1 τ (Measurement Limited) 0.1 1 10 Averaging Time (s) 100 Comparison of Various Oscillators/Synthesizers Phase noise for 1 GHz carrier -80 L(f) [dBc/Hz] -100 a f -120 a. b. c. d. e. f. g. b g -140 -160 e -180 c d -200 0 10 10 1 2 10 10 3 Frequency [Hz] 4 10 10 5 Premium quartz oscillator Low noise synthesizer Sapphire oscillator Ca optical (projected) Hg+ optical cavity fs synthesizer: optical pulse train fs synthesizer: microwave output Potential Limitations to RF Stability shot •Shot Noise: σ y ( τ ) = 1 2πnf rτ 6 eiR∆f Prf σ yshot (τ ) = 1× 10 −15τ -1 for i = 4 mA, Prf = −10dBm, ∆f = 150 kHz •Excess Phase Noise in Photodetection → AM-PM conversion exists. For example, timing jitter of 1-10 ps/mW in various photodetectors. → Saturation with high peak power?? •Excess noise from Laser or Microstructure Fiber Amplification of Fundamental Noise in Microstructured Fibers -20 RIN (dBc/Hz) -60 λL (b) -120 Power (dB) -40 (a) K. Corwin, N. Newbury, J. Dudley, S. Coen, K. Weber, S. Diddams, R. Windeler (to appear in PRL) λR -140 600 800 1000 Wavlength (nm) 1200 1400 RIN (dBc/Hz) 600 400 -100 (b) -120 0.0 0.2 0.4 0.6 0.8 Pulse Energy (nJ) 1.0 Width (nm) (a) Experiment Theory A New, Simpler Tool: 1 GHz Ti:sapphire Octave-Spanning Oscillator A. Bartels and H. Kurz, Opt. Lett. 27, 1839 (2002) M3 OC 532 nm pump L M1 Ti:Sa • High repetition rate— 800 mW total power • Compact, 5-element ring design M2 KEY ELEMENT: 1000mm ROC convex mirror (M3) increased self-amplitude modulation Æ shorter pulses Æ enhanced self-phase modulation Output spectrum of laser 102 Power Per 1 GHz Mode (µW) 101 100 10-1 10-2 10-3 10-4 10-5 10-6 600 800 1000 1200 1400 Wavelength (nm) Frequency triple 960nm and double 640nm to obtain 320nm heterodyne (fo) 3fn – 2fm = 3(nfr + fo) – 2(mfr + fo) = fo Detection of fo without microstructure fiber Ti:Sa laser 640 nm U. Morgner, et al. Phys. Rev. Lett. 86, 5462 (2001). T. Ramond, et al. Opt. Lett. 27, 1842 (2002). 2f BBO 320 nm 960 nm LiIO3 960 nm 3f 480 nm Single Mode Fiber BBO 320 nm fo PMT No critical alignment of nonlinear elements Can be phase-locked nearly indefinitely…. Ramond et al. Optics Letters 27, 1842 Long-term Phase Locking of Broadband Laser Control of femtosecond laser: <6ä10-18 @ 10 s ïcan count >1019 optical cycles without missing a single one! (mHz) f0 - 100 MHz 5 a) Offset Frequency 0 b) (mHz) 100 Beat with Stabilized Laser Diode 50 0 (mHz) 0.6 300 c) 0.4 200 0.2 100 0.0 0 -0.2 -100 0 2 4 6 8 10 12 Time (h) 14 16 18 20 fLD Drift (kHz) fR - 998,092,449.54 Hz fb - 600 MHz -5 Repetition Rate Summary + Outlook •Femtosecond lasers combined with cold atom standards will be the basis of future atomic clocks (stability ~1µ10-16 @1s, accuracy < 1µ10-17 ) •Emerging applications and uses: --secure communications --ultra low noise microwaves (RADAR) --length metrology --time/frequency transfer over fiber networks --remote sensing --extreme nonlinear optics •Smaller, more compact, more robust --novel solid state femtosecond lasers --broader spectra, different wavelength regimes
© Copyright 2026 Paperzz