Olika typer av Riemannsummor 22 december 2006 An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using an Upper Riemann Sum An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using an Upper Riemann Sum Area: 2.297682803 An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using an Upper Riemann Sum Area: 2.152965607 Area: 2.077511627 1,0 1,0 1,0 0,75 0,75 0,75 0,5 0,5 0,5 0,25 0,25 0,25 0,0 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 x −0,25 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 x −0,25 Partitions: 10 0,0 0,5 1,0 1,5 2,0 2,5 3,0 x −0,25 Partitions: 20 Partitions: 40 f(x) f(x) f(x) Figur 1: Riemannsumma där varje delrektangels höjd är funktionens max An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using a Lower Riemann Sum An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using a Lower Riemann Sum Area: 1.669364272 An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using a Lower Riemann Sum Area: 1.838806340 Area: 1.920431996 1,0 1,0 1,0 0,75 0,75 0,75 0,5 0,5 0,5 0,25 0,25 0,25 0,0 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 x −0,25 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 x −0,25 Partitions: 10 0,0 0,5 1,0 1,5 2,0 2,5 3,0 x −0,25 Partitions: 20 Partitions: 40 f(x) f(x) f(x) Figur 2: Riemannsumma där varje delrektangels höjd är är funktionens min. An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using a Riemann Sum with Randomly Selected Points An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using a Riemann Sum with Randomly Selected Points Area: 2.075299349 An Approximation of the Integral of f(x) = sin(x) on the Interval [0, Pi] Using a Riemann Sum with Randomly Selected Points Area: 1.965606506 Area: 2.007168829 1,0 1,0 1,0 0,75 0,75 0,75 0,5 0,5 0,5 0,25 0,25 0,25 0,0 0,0 0,0 0,5 1,0 1,5 2,0 x −0,25 2,5 0,0 0,0 3,0 0,5 1,0 2,0 x −0,25 Partitions: 10 1,5 3,0 0,0 0,5 1,0 1,5 2,0 2,5 x −0,25 Partitions: 20 f(x) 2,5 Partitions: 40 f(x) f(x) Figur 3: Riemannsummor där höjden mäts ovanför en slumpmässigt vald punkt i delintervallen 3,0
© Copyright 2026 Paperzz