Problem Set: Module 2 Lesson 27

Problem Set: Module 2 Lesson 27
Find the value of πœƒ that makes each statement true.
1.
a. sin πœƒ = cos⁑(πœƒ + 38)
c. sin πœƒ = cos⁑(3πœƒ + 20)
Note: 𝛼 + 𝛽 = 90
Note: 𝛼 + 𝛽 = 90
πœƒ +(πœƒ + 38) = 90
πœƒ +(3πœƒ + 20) = 90
2πœƒ + 38 = 90
4πœƒ + 20 = 90
2πœƒ = 52
4πœƒ = 70
πœƒ = 26
πœƒ = 17.5
b. cos πœƒ = sin⁑(πœƒ βˆ’ 30)
πœƒ
3
d. sin ( + 10) = cosβ‘πœƒ
Note: 𝛼 + 𝛽 = 90
Note: 𝛼 + 𝛽 = 90
πœƒ +(πœƒ βˆ’ 30) = 90
πœƒ
( + 10) + πœƒ = 90
3
4πœƒ
+ 10 = 90
3
4πœƒ
= 80
3
2πœƒ βˆ’ 30 = 90
2πœƒ = 120
πœƒ = 60
πœƒ = 60
3. Langdon thinks that the sum sin 30 + sin 30 is equal to sin 60. Do you agree with Langdon? Explain what this means
about the sum of sines of angles.
sin 30 + sin 30 =
sin 60 =
1 1
+ =1
2 2
√3
β‰ 1
2
This shows that the sum of the sines of angles is not equal to the sine of the sum of angles.
4. A square has side lengths of 7√2. Use sine or cosine to find the length of the diagonal of the square. Confirm your
answer using the Pythagorean Theorem.
The diagonal of a square cuts the square into two congruent 45-45-90 right triangles. Let d be the length of the diagonal.
sin 45 =
𝑑=
7√2
𝑑
7√2
2
√2
= 7√2 ⁑ ÷
= 7√2 ⁑ ×
sin 45
2
√2
𝑑 = 14
2
2
(7√2) + (7√2) = β„Žπ‘¦π‘2
98 + 98 = β„Žπ‘¦π‘2
√196 = β„Žπ‘¦π‘
14 = β„Žπ‘¦π‘
5. Given an equilateral triangle with sides of length 9, find the length of the altitude. Confirm your answer using the
Pythagorean Theorem.
sin 60 =
√3
2
√3 π‘Žπ‘™π‘‘π‘–π‘‘π‘’π‘‘π‘’
=
2
9
π‘Žπ‘™π‘‘π‘–π‘‘π‘’π‘‘π‘’ =
9√3
2
9 2
( ) + 𝑙𝑒𝑔2 = 92
2
81
+ 𝑙𝑒𝑔2 = 81
4
𝑙𝑒𝑔2 = 81 βˆ’
𝑙𝑒𝑔2 =
81
4
243
4
243 √243
𝑙𝑒𝑔 = ⁑ √
=
4
2
𝑙𝑒𝑔 =
9√3
2