Slide 1 ___________________________________ ___________________________________ ___________________________________ ___________________________________ Gases ___________________________________ ___________________________________ Chapter 5 ___________________________________ 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Slide 2 ___________________________________ Elements that exist as gases at 250C and 1 atmosphere ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 2 Slide ___________________________________ 3 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 3 Slide 4 ___________________________________ Physical Characteristics of Gases • Gases assume the volume and shape of their containers. • Gases are the most compressible state of matter. • Gases will mix evenly and completely when confined to the same container. ___________________________________ • Gases have much lower densities than liquids and solids. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ NO2 gas 4 Slide 5 ___________________________________ Force Pressure = Area ___________________________________ ___________________________________ (force = mass x acceleration) ___________________________________ Units of Pressure ___________________________________ 1 pascal (Pa) = 1 N/m2 ___________________________________ 1 atm = 760 mmHg = 760 torr 1 atm = 101,325 Pa ___________________________________ 5 Slide ___________________________________ 6 ___________________________________ ___________________________________ 10 miles ___________________________________ 0.2 atm ___________________________________ 4 miles Sea level 0.5 atm ___________________________________ 1 atm ___________________________________ 6 Slide Manometers Used to Measure Gas Pressures 7 closed-tube ___________________________________ ___________________________________ open-tube ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 7 Slide 8 Apparatus for Studying the Relationship Between Pressure and Volume of a Gas ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ As P (h) increases Slide V decreases 8 ___________________________________ Boyle’s Law 9 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ P 1/V P x V = constant P1 x V1 = P2 x V2 Constant temperature Constant amount of gas 9 ___________________________________ Slide 10 ___________________________________ A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL? ___________________________________ ___________________________________ P x V = constant ___________________________________ P1 x V1 = P2 x V2 P2 = P1 = 726 mmHg P2 = ? V1 = 946 mL V2 = 154 mL ___________________________________ ___________________________________ P1 x V1 726 mmHg x 946 mL = = 4460 mmHg 154 mL V2 ___________________________________ 10 Slide 11 ___________________________________ Variation in Gas Volume with Temperature at Constant Pressure ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ As T increases Slide 12 V increases 11 ___________________________________ Variation of Gas Volume with Temperature at Constant Pressure ___________________________________ ___________________________________ Charles’ & Gay-Lussac’s Law ___________________________________ ___________________________________ ___________________________________ VT V = constant x T Temperature must be in Kelvin V1/T1 = V2 /T2 T (K) = t (°C) + 273.15 12 ___________________________________ Slide 13 ___________________________________ A sample of carbon monoxide gas occupies 3.20 L at 125 °C. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant? ___________________________________ ___________________________________ V1 /T1 = V2 /T2 V1 = 3.20 L V2 = 1.54 L T1 = 398.15 K T2 = ? ___________________________________ ___________________________________ T1 = 125 (°C) + 273.15 (K) = 398.15 K T2 = V2 x T1 = V1 1.54 L x 398.15 K 3.20 L ___________________________________ ___________________________________ = 192 K 13 Slide ___________________________________ Avogadro’s Law 14 V number of moles (n) Constant temperature Constant pressure V = constant x n ___________________________________ ___________________________________ V1 / n1 = V2 / n2 ___________________________________ ___________________________________ ___________________________________ ___________________________________ 14 Slide 15 ___________________________________ Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure? ___________________________________ ___________________________________ 4NH3 + 5O2 4NO + 6H2O ___________________________________ 1 mole NH3 1 mole NO ___________________________________ At constant T and P 1 volume NH3 ___________________________________ 1 volume NO ___________________________________ 15 Slide ___________________________________ Summary of Gas Laws 16 ___________________________________ Boyle’s Law ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 16 Slide ___________________________________ Charles Law 17 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 17 Slide 18 ___________________________________ Avogadro’s Law ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 18 Slide ___________________________________ Ideal Gas Equation 19 ___________________________________ 1 Boyle’s law: P (at constant n and T) V Charles’ law: V T (at constant n and P) ___________________________________ Avogadro’s law: V n (at constant P and T) nT V P nT nT V = constant x =R R is the gas constant P P ___________________________________ ___________________________________ ___________________________________ ___________________________________ PV = nRT 19 Slide 20 ___________________________________ The conditions 0 °C and 1 atm are called standard temperature and pressure (STP). ___________________________________ Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L. ___________________________________ ___________________________________ ___________________________________ PV = nRT R= (1 atm)(22.414L) PV = nT (1 mol)(273.15 K) ___________________________________ ___________________________________ R = 0.082057 L • atm / (mol • K) 20 Slide 21 ___________________________________ What is the volume (in liters) occupied by 49.8 g of HCl at STP? ___________________________________ T = 0 °C = 273.15 K ___________________________________ P = 1 atm PV = nRT nRT V= P n = 49.8 g x 1.37 mol x 0.0821 V= L•atm mol•K 1 mol HCl = 1.37 mol 36.45 g HCl ___________________________________ ___________________________________ x 273.15 K 1 atm ___________________________________ V = 30.7 L ___________________________________ 21 Slide 22 ___________________________________ Density (d) Calculations ___________________________________ PM d= m = V RT m is the mass of the gas in g M is the molar mass of the gas ___________________________________ ___________________________________ Molar Mass (M ) of a Gaseous Substance M= dRT P ___________________________________ d is the density of the gas in g/L ___________________________________ ___________________________________ 22 Slide 23 ___________________________________ A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and 27.0 °C. What is the molar mass of the gas? M= M= dRT P 2.21 g L 4.65 g = 2.21 d= m = V 2.10 L x 0.0821 L•atm mol•K g L ___________________________________ ___________________________________ ___________________________________ x 300.15 K ___________________________________ 1 atm ___________________________________ M = 54.5 g/mol ___________________________________ 23 Slide ___________________________________ Gas Stoichiometry 24 ___________________________________ ___________________________________ What is the volume of CO2 produced at 37 0C and 1.00 atm when 5.60 g of glucose are used up in the reaction: C6H12O6(s) + 6O2(g) g C6H12O6 mol C6H12O6 5.60 g C6H12O6 x 6 mol CO2 1 mol C6H12O6 x = 0.187 mol CO2 180 g C6H12O6 1 mol C6H12O6 nRT V= = P ___________________________________ 6CO2(g) + 6H2O(l) mol CO2 ___________________________________ V CO2 L•atm x 310.15 K mol•K 1.00 atm ___________________________________ ___________________________________ 0.187 mol x 0.0821 = 4.76 L 24 Slide ___________________________________ Dalton’s Law of Partial Pressures 25 V and T are constant ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ P2 P1 Ptotal = P1 + P2 ___________________________________ 25 Slide 26 ___________________________________ Consider a case in which two gases, A and B, are in a container of volume V. ___________________________________ PA = nART V nA is the number of moles of A ___________________________________ PB = nBRT V nB is the number of moles of B ___________________________________ PT = PA + PB PA = XA PT XA = nA nA + nB XB = nB nA + nB ___________________________________ ___________________________________ PB = XB PT Pi = Xi PT mole fraction (Xi ) = ___________________________________ ni nT 26 Slide 27 ___________________________________ A sample of natural gas contains 8.24 moles of CH4, 0.421 moles of C2H6, and 0.116 moles of C3H8. If the total pressure of the gases is 1.37 atm, what is the partial pressure of propane (C3H8)? Pi = Xi PT PT = 1.37 atm Xpropane = 0.116 8.24 + 0.421 + 0.116 ___________________________________ ___________________________________ ___________________________________ ___________________________________ = 0.0132 ___________________________________ Ppropane = 0.0132 x 1.37 atm = 0.0181 atm ___________________________________ 27 Slide ___________________________________ Collecting a Gas over Water 28 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 2KClO3 (s) 2KCl (s) + 3O2 (g) PT = PO2 + PH2 O 28 Slide ___________________________________ 29 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 29 Slide 30 ___________________________________ Kinetic Molecular Theory of Gases 1. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume. 2. Gas molecules are in constant motion in random directions, and they frequently collide with one another. Collisions among molecules are perfectly elastic. ___________________________________ ___________________________________ ___________________________________ 3. Gas molecules exert neither attractive nor repulsive forces on one another. ___________________________________ 4. The average kinetic energy of the molecules is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy KE = ½ mu2 ___________________________________ 30 ___________________________________ Slide 31 ___________________________________ Kinetic theory of gases and … • Compressibility of Gases ___________________________________ • Boyle’s Law ___________________________________ P collision rate with wall Collision rate number density Number density 1/V P 1/V ___________________________________ ___________________________________ • Charles’ Law P collision rate with wall Collision rate average kinetic energy of gas molecules Average kinetic energy T PT Slide 32 ___________________________________ ___________________________________ 31 ___________________________________ Kinetic theory of gases and … • Avogadro’s Law ___________________________________ P collision rate with wall Collision rate number density Number density n Pn ___________________________________ ___________________________________ • Dalton’s Law of Partial Pressures ___________________________________ Molecules do not attract or repel one another P exerted by one type of molecule is unaffected by the presence of another gas Ptotal = SPi ___________________________________ ___________________________________ 32 Slide ___________________________________ 33 ___________________________________ The distribution of speeds of three different gases at the same temperature ___________________________________ ___________________________________ ___________________________________ The distribution of speeds for nitrogen gas molecules at three different temperatures urms = ___________________________________ 3RT M ___________________________________ 33 Slide 34 ___________________________________ Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties. r1 r2 = M2 M1 ___________________________________ ___________________________________ ___________________________________ molecular path NH4Cl ___________________________________ ___________________________________ NH3 17 g/mol ___________________________________ HCl 36 g/mol 34 Slide 35 ___________________________________ Gas effusion is the is the process by which gas under pressure escapes from one compartment of a container to another by passing through a small opening. r1 r2 = t2 t1 = ___________________________________ M2 M1 ___________________________________ ___________________________________ ___________________________________ Nickel forms a gaseous compound of the formula Ni(CO) x What is the value of x given that under the same conditions methane (CH4) effuses 3.3 times faster than the compound? r1 2 x M1 = (3.3)2 x 16 = 174.2 r1 = 3.3 x r2 M2 = r2 x = 4.1 ~ 4 35 M1 = 16 g/mol 58.7 + x • 28 = 174.2 ( ) Slide 36 ___________________________________ ___________________________________ ___________________________________ Deviations from Ideal Behavior ___________________________________ ___________________________________ 1 mole of ideal gas PV = nRT PV = 1.0 n= RT Repulsive Forces ___________________________________ ___________________________________ Attractive Forces ___________________________________ ___________________________________ 36 Slide 37 ___________________________________ Effect of intermolecular forces on the pressure exerted by a gas. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 37 Slide ___________________________________ 38 ___________________________________ Van der Waals equation nonideal gas ___________________________________ ___________________________________ 2 (V – nb) = nRT ( P + an V2 ) } } corrected pressure corrected volume ___________________________________ ___________________________________ ___________________________________ 38 Slide 39 ___________________________________ CH-5 ___________________________________ ___________________________________ Questions and Problems Page 168 - 172 ___________________________________ 5.14, 5.18, 5.20, 5.22, 5.24, 5.32, 5.34, 5.36, 5.38, 5.40, 5.42, 5.44, 5.46, 5.50, 5.82. ___________________________________ ___________________________________ ___________________________________ 39
© Copyright 2026 Paperzz