Chapter 5

Slide
1
___________________________________
___________________________________
___________________________________
___________________________________
Gases
___________________________________
___________________________________
Chapter 5
___________________________________
1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Slide
2
___________________________________
Elements that exist as gases at
250C
and 1 atmosphere
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
2
Slide
___________________________________
3
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
3
Slide
4
___________________________________
Physical Characteristics of Gases
•
Gases assume the volume and shape of their containers.
•
Gases are the most compressible state of matter.
•
Gases will mix evenly and completely when confined to
the same container.
___________________________________
•
Gases have much lower densities than liquids and solids.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
NO2 gas
4
Slide
5
___________________________________
Force
Pressure = Area
___________________________________
___________________________________
(force = mass x acceleration)
___________________________________
Units of Pressure
___________________________________
1 pascal (Pa) = 1 N/m2
___________________________________
1 atm = 760 mmHg = 760 torr
1 atm = 101,325 Pa
___________________________________
5
Slide
___________________________________
6
___________________________________
___________________________________
10 miles
___________________________________
0.2 atm
___________________________________
4 miles
Sea level
0.5 atm
___________________________________
1 atm
___________________________________
6
Slide
Manometers Used to Measure Gas Pressures
7
closed-tube
___________________________________
___________________________________
open-tube
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
7
Slide
8
Apparatus for Studying the Relationship Between
Pressure and Volume of a Gas
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
As P (h) increases
Slide
V decreases
8
___________________________________
Boyle’s Law
9
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
P  1/V
P x V = constant
P1 x V1 = P2 x V2
Constant temperature
Constant amount of gas
9
___________________________________
Slide
10
___________________________________
A sample of chlorine gas occupies a volume of 946 mL at a
pressure of 726 mmHg. What is the pressure of the gas (in
mmHg) if the volume is reduced at constant temperature to 154
mL?
___________________________________
___________________________________
P x V = constant
___________________________________
P1 x V1 = P2 x V2
P2 =
P1 = 726 mmHg
P2 = ?
V1 = 946 mL
V2 = 154 mL
___________________________________
___________________________________
P1 x V1
726 mmHg x 946 mL
=
= 4460 mmHg
154 mL
V2
___________________________________
10
Slide
11
___________________________________
Variation in Gas Volume with Temperature at Constant Pressure
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
As T increases
Slide
12
V increases
11
___________________________________
Variation of Gas Volume with Temperature
at Constant Pressure
___________________________________
___________________________________
Charles’ &
Gay-Lussac’s
Law
___________________________________
___________________________________
___________________________________
VT
V = constant x T
Temperature must be
in Kelvin
V1/T1 = V2 /T2
T (K) = t (°C) + 273.15
12
___________________________________
Slide
13
___________________________________
A sample of carbon monoxide gas occupies 3.20 L at 125 °C.
At what temperature will the gas occupy a volume of 1.54 L if
the pressure remains constant?
___________________________________
___________________________________
V1 /T1 = V2 /T2
V1 = 3.20 L
V2 = 1.54 L
T1 = 398.15 K
T2 = ?
___________________________________
___________________________________
T1 = 125 (°C) + 273.15 (K) = 398.15 K
T2 =
V2 x T1
=
V1
1.54 L x 398.15 K
3.20 L
___________________________________
___________________________________
= 192 K
13
Slide
___________________________________
Avogadro’s Law
14
V  number of moles (n)
Constant temperature
Constant pressure
V = constant x n
___________________________________
___________________________________
V1 / n1 = V2 / n2
___________________________________
___________________________________
___________________________________
___________________________________
14
Slide
15
___________________________________
Ammonia burns in oxygen to form nitric oxide (NO) and water
vapor. How many volumes of NO are obtained from one volume
of ammonia at the same temperature and pressure?
___________________________________
___________________________________
4NH3 + 5O2
4NO + 6H2O
___________________________________
1 mole NH3
1 mole NO
___________________________________
At constant T and P
1 volume NH3
___________________________________
1 volume NO
___________________________________
15
Slide
___________________________________
Summary of Gas Laws
16
___________________________________
Boyle’s Law
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
16
Slide
___________________________________
Charles Law
17
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
17
Slide
18
___________________________________
Avogadro’s Law
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
18
Slide
___________________________________
Ideal Gas Equation
19
___________________________________
1
Boyle’s law: P  (at
constant n and T)
V
Charles’ law: V  T (at constant n and P)
___________________________________
Avogadro’s law: V  n (at constant P and
T)
nT
V
P
nT
nT
V = constant x
=R
R is the gas constant
P
P
___________________________________
___________________________________
___________________________________
___________________________________
PV = nRT
19
Slide
20
___________________________________
The conditions 0 °C and 1 atm are called standard
temperature and pressure (STP).
___________________________________
Experiments show that at STP, 1 mole of an ideal
gas occupies 22.414 L.
___________________________________
___________________________________
___________________________________
PV = nRT
R=
(1 atm)(22.414L)
PV
=
nT
(1 mol)(273.15 K)
___________________________________
___________________________________
R = 0.082057 L • atm / (mol • K)
20
Slide
21
___________________________________
What is the volume (in liters) occupied by 49.8 g of HCl at STP?
___________________________________
T = 0 °C = 273.15 K
___________________________________
P = 1 atm
PV = nRT
nRT
V=
P
n = 49.8 g x
1.37 mol x 0.0821
V=
L•atm
mol•K
1 mol HCl
= 1.37 mol
36.45 g HCl
___________________________________
___________________________________
x 273.15 K
1 atm
___________________________________
V = 30.7 L
___________________________________
21
Slide
22
___________________________________
Density (d) Calculations
___________________________________
PM
d= m =
V
RT
m is the mass of the gas in g
M is the molar mass of the gas
___________________________________
___________________________________
Molar Mass (M ) of a Gaseous Substance
M=
dRT
P
___________________________________
d is the density of the gas in g/L
___________________________________
___________________________________
22
Slide
23
___________________________________
A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and 27.0
°C. What is the molar mass of the gas?
M=
M=
dRT
P
2.21
g
L
4.65 g
= 2.21
d= m =
V 2.10 L
x 0.0821
L•atm
mol•K
g
L
___________________________________
___________________________________
___________________________________
x 300.15 K
___________________________________
1 atm
___________________________________
M = 54.5 g/mol
___________________________________
23
Slide
___________________________________
Gas Stoichiometry
24
___________________________________
___________________________________
What is the volume of CO2 produced at 37 0C and 1.00 atm
when 5.60 g of glucose are used up in the reaction:
C6H12O6(s) + 6O2(g)
g C6H12O6
mol C6H12O6
5.60 g C6H12O6 x
6 mol CO2
1 mol C6H12O6
x
= 0.187 mol CO2
180 g C6H12O6
1 mol C6H12O6
nRT
V=
=
P
___________________________________
6CO2(g) + 6H2O(l)
mol CO2
___________________________________
V CO2
L•atm
x 310.15 K
mol•K
1.00 atm
___________________________________
___________________________________
0.187 mol x 0.0821
= 4.76 L
24
Slide
___________________________________
Dalton’s Law of Partial Pressures
25
V and T are constant
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
P2
P1
Ptotal = P1 + P2
___________________________________
25
Slide
26
___________________________________
Consider a case in which two gases, A and B, are in a
container of volume V.
___________________________________
PA =
nART
V
nA is the number of moles of A
___________________________________
PB =
nBRT
V
nB is the number of moles of B
___________________________________
PT = PA + PB
PA = XA PT
XA =
nA
nA + nB
XB =
nB
nA + nB
___________________________________
___________________________________
PB = XB PT
Pi = Xi PT
mole fraction (Xi ) =
___________________________________
ni
nT
26
Slide
27
___________________________________
A sample of natural gas contains 8.24 moles of CH4, 0.421
moles of C2H6, and 0.116 moles of C3H8. If the total pressure
of the gases is 1.37 atm, what is the partial pressure of
propane (C3H8)?
Pi = Xi PT
PT = 1.37 atm
Xpropane =
0.116
8.24 + 0.421 + 0.116
___________________________________
___________________________________
___________________________________
___________________________________
= 0.0132
___________________________________
Ppropane = 0.0132 x 1.37 atm = 0.0181 atm
___________________________________
27
Slide
___________________________________
Collecting a Gas over Water
28
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
2KClO3 (s)
2KCl (s) + 3O2 (g)
PT = PO2 + PH2 O
28
Slide
___________________________________
29
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
29
Slide
30
___________________________________
Kinetic Molecular Theory of Gases
1. A gas is composed of molecules that are separated from
each other by distances far greater than their own
dimensions. The molecules can be considered to be points;
that is, they possess mass but have negligible volume.
2. Gas molecules are in constant motion in random directions,
and they frequently collide with one another. Collisions
among molecules are perfectly elastic.
___________________________________
___________________________________
___________________________________
3. Gas molecules exert neither attractive nor repulsive forces
on one another.
___________________________________
4. The average kinetic energy of the molecules is proportional
to the temperature of the gas in kelvins. Any two gases at
the same temperature will have the same average kinetic
energy
KE = ½ mu2
___________________________________
30
___________________________________
Slide
31
___________________________________
Kinetic theory of gases and …
• Compressibility of Gases
___________________________________
• Boyle’s Law
___________________________________
P  collision rate with wall
Collision rate  number density
Number density  1/V
P  1/V
___________________________________
___________________________________
• Charles’ Law
P  collision rate with wall
Collision rate  average kinetic energy of gas
molecules
Average kinetic energy  T
PT
Slide
32
___________________________________
___________________________________
31
___________________________________
Kinetic theory of gases and …
• Avogadro’s Law
___________________________________
P  collision rate with wall
Collision rate  number density
Number density  n
Pn
___________________________________
___________________________________
• Dalton’s Law of Partial Pressures
___________________________________
Molecules do not attract or repel one another
P exerted by one type of molecule is unaffected by the
presence of another gas
Ptotal = SPi
___________________________________
___________________________________
32
Slide
___________________________________
33
___________________________________
The distribution of speeds
of three different gases
at the same temperature
___________________________________
___________________________________
___________________________________
The distribution of speeds
for nitrogen gas molecules
at three different temperatures
urms =
___________________________________
 3RT
M
___________________________________
33
Slide
34
___________________________________
Gas diffusion is the gradual mixing of molecules of one gas
with molecules of another by virtue of their kinetic properties.
r1
r2
=

M2
M1
___________________________________
___________________________________
___________________________________
molecular path
NH4Cl
___________________________________
___________________________________
NH3
17 g/mol
___________________________________
HCl
36 g/mol
34
Slide
35
___________________________________
Gas effusion is the is the process by which gas under
pressure escapes from one compartment of a container to
another by passing through a small opening.
r1
r2
=
t2
t1
=

___________________________________
M2
M1
___________________________________
___________________________________
___________________________________
Nickel forms a gaseous compound of the formula Ni(CO) x What
is the value of x given that under the same conditions methane
(CH4) effuses 3.3 times faster than the compound?
r1 2
x M1 = (3.3)2 x 16 = 174.2
r1 = 3.3 x r2
M2 =
r2
x = 4.1 ~ 4 35
M1 = 16 g/mol
58.7 + x • 28 = 174.2
( )
Slide
36
___________________________________
___________________________________
___________________________________
Deviations from Ideal Behavior
___________________________________
___________________________________
1 mole of ideal gas
PV = nRT
PV = 1.0
n=
RT
Repulsive Forces
___________________________________
___________________________________
Attractive Forces
___________________________________
___________________________________
36
Slide
37
___________________________________
Effect of intermolecular forces on the pressure exerted by a gas.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
37
Slide
___________________________________
38
___________________________________
Van der Waals equation
nonideal gas
___________________________________
___________________________________
2
(V – nb) = nRT
( P + an
V2 )
}
}
corrected
pressure
corrected
volume
___________________________________
___________________________________
___________________________________
38
Slide
39
___________________________________
CH-5
___________________________________
___________________________________
Questions and Problems
Page 168 - 172
___________________________________
5.14, 5.18, 5.20, 5.22, 5.24, 5.32, 5.34, 5.36, 5.38,
5.40, 5.42, 5.44, 5.46, 5.50, 5.82.
___________________________________
___________________________________
___________________________________
39