NAME DATE 12-6 PERIOD Study Guide and Intervention Circular Functions Circular Functions If the terminal side of an angle θ in standard position intersects the unit circle at P(x, y), then cos θ = x and sin θ = y. Therefore, the coordinates of P can be written as P(cos θ, sin θ). Definition of Sine and Cosine (0,1) y P(cos θ, sin θ) θ (-1,0) (1,0) x O (0,-1) Example The terminal side of angle θ in standard position intersects the unit ) ( P(- − , −) = P(cos θ, sin θ), so cos θ = - − and sin θ = −. √ 11 6 6 5 circle at P - − , − . Find cos θ and sin θ. 5 6 √ 11 6 √ 11 6 5 6 Exercises The terminal side of angle θ in standard position intersects the unit circle at each point P. Find cos θ and sin θ. √3 2 2 ) Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. 2. P(0, -1) √3 1 sin θ = − , cos θ = - − 2 ( √ 5 3 2 3. P - − ,− 3 sin θ = -1, cos θ = 0 2 ) ( √5 3 (6 6 5 ( 47 4 ) √ 3 6. P −, − √ 35 1 sin θ = - −, cos θ = − 6 √7 3 sin θ = − , cos θ = − 6 7. P is on the terminal side of θ = 45°. 4 9. P is on the terminal side of θ = 240°. 4 8. P is on the terminal side of θ = 120°. √3 2 √2 √ 2 sin θ = −, cos θ = − 2 2 1 sin θ = −, cos θ = - − 2 10. P is on the terminal side of θ = 330°. √3 1 sin θ = −, cos θ = - − 2 2 Chapter 12 5 5 3 ) 5 3 4 cos θ = - − , sin θ = - − 2 sin θ = −, cos θ = - − √ 35 1 5. P − , -− ) 3 4 4. P - − , -− √3 2 1 sin θ = - − , cos θ = − 2 35 Glencoe Algebra 2 Lesson 12-5 ( 1 1. P - − , − NAME DATE 12-6 PERIOD Study Guide and Intervention (continued) Circular Functions Periodic Functions A periodic function has y-values that repeat at regular intervals. One complete pattern is called a cycle, and the horizontal length of one cycle is called a period. The sine and cosine functions are periodic; each has a period of 360° or 2π radians. Example 1 Determine the period of the function. The pattern of the function repeats every 10 units, so the period of the function is 10. y 1 O 5 -1 15 10 Example 2 20 25 30 35 θ Find the exact value of each function. (6) 31π 7π = cos (− + 4π) cos (− 6 ) 6 31π b. cos − a. sin 855° sin 855° = sin (135° + 720°) √ 2 2 = sin 135° or − √3 7π or - − = cos − 6 2 Determine the period of each function. 1. 1 y O 2. 2π π 3π 4π θ 5π − y 0 2 2 -1 6 4 8 10 x 6 Find the exact value of each function. 1 2 3. sin (-510°) - − (3) 5π 6. sin − Chapter 12 √3 2 -− √2 2 (4) 11π 7. cos − √2 2 - − 36 ) ( 2 ( 4 ) 5π 5. cos - − 4. sin 495° − 3π 8. sin - − 0 √2 2 - − Glencoe Algebra 2 Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. Exercises
© Copyright 2026 Paperzz