R 7. y 0 + y = x. I(x) = e x − 1 + Ce−x . 1dx = ex ⇒ (ex y)0 = xex ⇒ ex y = R xex dx = xex − ex + C ⇒ y = 2 − t +C 2 . 13. [(1 + t)u]0 = 1 + t ⇒ (1 + t)u = t + t2 + C ⇒ u = t + 1+t R 15. (x2 y)0 = ln x ⇒ x2 y = ln xdx = x ln x − x + C ⇒ y = . −1 + C ⇒ C = 3 ⇒ y = x ln x−x+3 x2 2 R 3x 2 = y(1) = 3 tan θ R dx x ln x−x+C . x2 = = e x2 +1 = e sec2 θ d(tan θ) = e−3 ln | cos θ| = | sec θ|3 = (1 + √ R √ x ) ⇒ (1 + x ) y = 3x 1 + x2 ⇒ (1 + x2 )3/2 y = 3x 1 + x2 dx = (1 + x2 )3/2 + C ⇒ y = 1 + C(1 + x2 )−3/2 . 1 du −n dy 1−n −n dy 23. 1−n + P (x)u = y + P (x)y = y + P (x)y = y −n Q(x)y n = Q(x). dx dx dx R 29. 5 dQ + 20Q = 60 ⇒ Q0 + 4Q = 12 ⇒ e4t Q = 12e4t dt = 3e4t + C ⇒ Q = 3 + Ce−4t , dt where 3 + C = Q(0) = 0 ⇒ C = −3. Hence Q = 3 − 3e−4t and I = 12e−4t . R R 3 3 33. I(t) = e 100+2t dt = e 2 ln |50+t| = (50 + t)3/2 ⇒ (50 + t)3/2 y = 2(50 + t)3/2 dt = 4 (50 + t)5/2 + C ⇒ y = 4(50+t) + C(50 + t)−3/2 , where y(0) = 40 + C · 50−3/2 = 0. This 5 5 −3/2 gives C = 5−3−40 = −40·2 = −40000 · 2−3/2 and 10−3 ·2−3/2 20. 0 3x . I(x) x2 +1 2 3/2 0 y + x23x+1 y 2 3/2 y= y(20) 100+2·20 ≈ 35. (a) v 0 + v = v= 56−24.147 140 c v m 2(100 + 2t) − 40000(100 + 2t)−3/2 5 ≈ 0.2275 kg/L. = g ⇒ I(t) = e −ct mg + Ae m . Since c −ct mg 1−e m . c R c dt m ct 0 ct ct ct = e m and e m v = e m g ⇒ e m v = v(0) = 0, we have 0 = −ct m lim 1 − e . (b) lim v = mg = mg c t→∞ c t→∞ h it Rt −cx mg m −cx m m (c) 0 mg 1 − e dx = x + = e c c c 0 36. dv dm = g c 1−e −ct m − mg c · is then sufficient to show 37. (a) z 0 + kz = −1 0 P P2 R kdt + k P = mg c mg c + A and thus A h t+ m −ct em c −ct −ct ct ct −ct · e m = gc 1 − e m − m em m2 −ct −ct d dv dv > 0: dtd dm = mg e m − mg e m dt dm −kP (1−P/M ) P2 kt 0 + k P = i − m2 g . c2 . Note that + ct mg m e +A ⇒ c = −mg . Hence c gct e m2 −ct m = dv dm t=0 gct −ct em m2 = 0. It > 0. k . M R kt kt kt (b) I(t) = e = ekt ⇒ e z = keM ⇒ ekt z = keM dt = eM + C ⇒ z = M −P0 1 1 M M M + Ce−kt ⇒ P = 1 +Ce . −kt = 1+M Ce−kt , where P0 = 1+M C ⇔ M C = P0 − 1 = M P0 Hence P = M 1+ M M −P0 −kt e P0 . 1
© Copyright 2026 Paperzz