NAME DATE PERIOD __ Study Guide Student Edition Pages 388-393 Adding and Subtracting Polynomials To add polynomials, group the like terms together and then find the sum. 3x2 and x2 are like terms. x2 and x, and x2 and y2 are unlike terms. Example 1: Find (3x2 + 2x - 5) + (x2 + 4x + 4). (3x2 + 2x - 5) + (x2 + 4x + 4) = (3x2 + 2x + (-5)) + (x2 + 4x + 4) = (3x2 + x2) + (2x + 4x) + (- 5 + 4) = (3 + l)x2 + (2 + 4)x + (-5 + 4) = 4X2 + 6x - 1 Rewrite subtraction. Regroup like terms. Distributive property Simplify. You can subtract a polynomial by adding its additive inverse. Example 2: Find the additive inverse of 5b2 - 3. The additive inverse is -(5b2 - 3) or -5b2 + 3. Example 3: Find (4m3 (4m3 = = = = - 6) - (7m3 - 9). 6) - (7m3 - 9) (4m3 - 6) + (-7m3 + 9) The additive inverse of 7m3 (4m3 - 7m3) + (-6 + 9) Regroup like terms. (4 - 7)m3 + (-6 + 9) Distributive property 3 Simplify. -3m + 3 - - 9 is -7m3 + 9. Find each sum or difference. 2. (8w2 1. (2a + 3) + (5a + 1) 3. (-5c4 + 2c2 - 6) + (6c4 5. (4g + h3) + (-9g - 2c2 + 5) + s) - (6s2 - 8s) 13. (7y2 + 2y + 21) - (9y2 + 6y + 11) © Glencoe/McGraw-Hili + (7w2 - 3w) 6. (2 - 16x2) + (8 - 16x2) 8. (35a2 + 15a - 20) + (10a2 + 25) 7. (18 + 5xy) + (-6 - 10xy) 11. (-18s2 w) 4. (12m - 5n) + (12m + 5n) - 4h3) 9. (6d + 3) - (4d + 5) + 10. (14 - 3t) - (2 + 7t) 12. (26g - 13gh) - (- 2g 14. (-5m2 56 + gh) + 2n - 1) - (7m2 + 16n - 8) Algebra: Concepts and Applications
© Copyright 2026 Paperzz