THEPROFITORIENTATIONOFMICROFINANCEINSTITUTIONS ANDEFFECTIVEINTERESTRATES PeterW.Roberts* GoizuetaBusinessSchool EmoryUniversity 1300CliftonRoad,Atlanta,GA,30322 404‐727‐8585 404‐727‐6313 [email protected] *TheauthorisgratefulforthehelpfulcommentsprovidedbyDavidKyle,AnandSwaminathanand PeterThompson. 1 THEPROFITORIENTATIONOFMICROFINANCEINSTITUTIONS ANDEFFECTIVEINTERESTRATES Sincethearrivaloffor‐profitmicrofinanceinstitutions(MFIs),commentatorshavebeenasking whetherthesectorbenefitsbyMFIsadoptingastrongerprofitorientation.Weaddressthis questionbyanalyzingtheiradoptionofthefor‐profitlegalform,appointingprivatesector representationandbankingacumentoMFIboards,andparticipationinmoreextensivefor‐profit networks.Theresultsconsistentlyindicatethatastrongerfor‐profitorientationcorrespondswith highereffectiveinterestratesforMFIclients.However,theseeffectsdonotleadtogreater profitabilityandthereforesustainabilitybecausethesevariablesarealsoassociatedwithincreases inthemajorelementsofanMFI’scosts. KeyWords:microfinance,global,interestrates,nonprofit 2 “SomeFearProfitMotivetoTrumpPovertyEffortsinMicrofinance”–NewYorkTimes headline,August28,2009 1.INTRODUCTION Microfinanceinstitutions(MFIs)arebankingorganizationswhoseprimarypurposeisthatof providingfinancialservicestopoorandotherwisemarginalizedclients(Mersland&Strøm,2010). Collectively,themicrofinancesectorislaudedformodifyingstandardbankingpracticesinorderto effectivelyextendcredittothepoorandindoingsohelpingtoelevatetheirstandardsofliving. Morespecifically,theinnovationsthatledtothemodernmicrofinancemovementovercametwo problemspreviouslythoughttoprohibitlendingtothepoor:smallloansizesandlittleorno collateral(Armendariz&Morduch,2005). Therecentevolutionofthemicrofinancesectorcanbeviewedintermsoftherapidgrowth inthenumberofactiveMFIs,increasesinthevolumeofbusinesstheyconduct,abroaderrangeof financialservicesonoffer,andchangesinthetypesandmotivationsofMFIs.Inthislatterrespect,an importantmarkerinthesector’sevolutionisthearrivalofprofit‐orientedMFIs.Althoughlaudedby manyascritically‐importantforthematurationofthesector,theseMFIsalsousheredindebates aboutwhetheritispossibletoeffectivelyblendnonprofitidealsandfor‐profitorientationsand practices(Morduch,2000). Morepractically,thesedebatesarerootedinquestionsaboutwhetherMFIswithstronger profitorientationsarebetterabletosustainablyaddresstheneedsofpoorborrowers.Some commentatorsclearlyplaceemphasisontheanti‐povertyorientationofMFIs:“thefirstgoalofMFIs istoreachmoreclientsinthepoorerstrataofthepopulation,andthesecondgoalisfinancial sustainability(Mersland&Strøm,2008a,pg.663).”However,itisalsobelievedthatalargenumber of(especiallynonprofit)MFIsarenotearningsufficientincometocovertheirfullcostsofoperation andexpansionandmustthereforerelyonsubsidies–intheformofgrantsanddonations–to sustainthemselves.Concernsaboutthereliabilityofthesefundingsourcesmakesthefinancial 3 viabilityofMFIsamajorconcernforsectorparticipants(Mersland&Strøm,2010). Inthisrespect,profit‐orientedMFIsarepartofthemovementtowardamore‘businesslike’ microfinancesector.Withheightenedbusinessacumenandastrongermarketorientation,profit‐ orientedMFIsaresupposedtosetmoreappropriateloanpricesanddelivergreaterefficiencies, andthushaveaneasiertimeattractingneededinvestmentintothesector.Thisshould,inturn, allowthesocialimpactsthattheygeneratetobemoresustainable(Hermes&Lensink,2007). Thearrivalofprofit‐orientedMFIsalsoraisesconcernsaboutMFIstradingoffsocialfor financialperformance.Incontrast,agreaterfocusonprofitabilitymightpushconcernsaboutthe well‐beingofpoorclientstothebackburner.Whiletheseconcernsclearlyapplytofor‐profitMFIs, theyalsoapplytononprofitMFIswhereattentiontosustainabilityareleadingsometoemphasize thegenerationoffinancialsurplus,evenifthatsurplusisneverdistributedtooutsideshareholders. Inbothcases,manyworrythatwewillseeMFIsabandoningthepoorestclientsinsearchofmore reliableprofitstreams–somethingcommentatorscall“missiondrift”(Copestake,2007). EvenMFIsthatremainfocusedonthepoorestclientsmightalterthemixofcostsand benefitsthattheyofferastheystriveforenhancedprofitability(Yunus,2011).Weaddressthis latterquestionbyexaminingtheimpactofMFIshavingastrongerprofitorientationontheeffective interestrateschargedtoclients.Whilethisisnottheonlyvariablethatmatterstomicrofinance clients(Cull,Demirguc‐Kunt,&Morduch,2009),itdoescapturetheeffectivepriceofcreditaccess. Weexaminedifferencesbetweentheeffectiveinterestrateschargedbynonprofitversus for‐profitMFIs.However,wealsorecognizethattheprofitorientationofanMFIextendsbeyondits decisiontooperateasafor‐profitorganization.Itisalsomanifestedinthemoresubtlechoicesand commitmentsthatanMFImakes.Inparticular,weexaminethecompositionofMFIgoverning boardstoascertainwhethertheycontainprivate‐sectorrepresentationand/orindividualswith bankingacumen.Wealsoexaminetheextenttowhichthenetworksupportorganizations(Cook& Isern,2004,pp.,pg.3)thatanMFIparticipatesinarethemselvespopulatedbynumerousotherfor‐ 4 profitMFIs.Intheend,ouranalysespaintasomewhatsoberingpictureoftheinfluenceofa strongerprofitorientationontheeffectiveinterestrateschargedtoMFIclients.Eachofthesethree variablesisassociatedwithhighereffectiveinterestrates.However,theseincreasesdonot manifestinhigherMFIprofitabilityandthereforesustainabilitybecausetheMFIsthataremore profitorientedalsotendtohavehighercosts. 2.PROFITORIENTATIONOFMICROFINANCEINSTITUTIONS Thecollectivepushtoseeamoreprofit‐orientedmicrofinancesectorismostevidentinthe relativelyhighincidenceoffor‐profitMFIsaroundtheworld.In2009,490ofthe1,169MFIs(42%) intheMIXMarketdatabasewerefor‐profitMFIs.Theycollectivelycontrolledroughlytwo‐thirdsof themorethan$65billioninassetsdeployedinthatyear.Clearly,adoptingafor‐profitlegalform suggestsastrongerprofitorientation.However,thedecisiontooperateasafor‐profitorganization isnottheonlychoicethatindicatestheprofitorientationofMFIs.Infact,Mersland&Strøm (2008b)recentlyconcludedthatMFIownership(e.g.,shareholderversusNGO)isnotparticularly relevantindeterminingitssocialorcommercialorientation.Rather,asCulletal.(2009)suggest, “earningprofitsdoesnotimplybeinga‘for‐profit’bank.”NonprofitMFIscananddoearnpositive profitsthataresimplynotdistributedtoshareholdersbutarere‐investedinactivitiesthatfurther servicetheirclients.Therefore,wealsolookatseveralotherorganizationalchoicesthatplausibly correspondwithanMFI’sprofitorientation. Appointingindividualstotheboardofdirectorsrepresentsanimportantstrategicdecision forMFIs.Advicefromandoversightbytheseboardmembershaveconsequencesfordecisions takenwithinanMFI.Thoseinterestedinadoptingbestpracticesfromthefor‐profitworldandfrom thetraditionalbankingsectormightthereforetendtoappointindividualstotheirboardswhobring experiencefromthesedomains.Morespecifically,appointingindividualsfromtheprivatesector,as opposedtothegovernmentorNGOsectors,indicatesadesiretobeinfluencedinthisdirection.The 5 samecanbesaidaboutappointingindividualswithbankingacumen.Thus,havingprivatesector representationandbankingacumenontheboardsuggestsastrongerprofitorientation. AnotherwaythatMFIsdeepentheircommitmenttoaprofitorientationisbyparticipating innetworkscomprisedofotherfor‐profitsMFIs.Sociologicalandmanagerialresearchonnetworks indicatesthatthebehaviorandperformanceoforganizationsisinfluencedbythenetworksin whichtheyparticipate(Brass,Galaskiewicz,Greve,&Tsai,2004).Fromanorganizationallearning perspective,thetiesthatmakeuporganizationalnetworksareconduitsthroughwhichknowledge andideasflows.Thiseffectisevidentinastatementtakenfromthewebsiteofoneprominent microfinancenetwork:“MicroFinanceNetwork(MFN)isaninternationalassociationofleading microfinanceinstitutions.ThroughtheMFN,31membersfrom27countriesshareideas, experiences,andinnovativesolutionstothechallengestheyfaceinsearchofcontinuousgrowthand progress.MFNmembersseektobemodelsofwhatispossibleintheindustry(www.mfnetwork.org).” Thelatteraspirationpointstoasecondcontrolaspectofnetworks.Thepredominantparticipants inanorganizationalnetworktendtodefinethenormsandpracticesinthatnetwork(Owen‐Smith &Powell,2004).IfotherMFIsthatpopulatemicrofinancenetworksarelargelyfor‐profitMFIs,then theorientationsandideasthattendtoflowthroughthosenetworkswillsupportandreinforcea strongerprofitorientationamongnetworkparticipants.Thissuggeststhatparticipatingin networkscomprisedofmorefor‐profitMFIssuggestsastrongerprofitorientation. AssumingthesevariablesindicatetheprofitorientationofanMFI,thequestionbecomes howthisorientationinfluencesbehaviorandperformance.Theoptimisticviewisthatsocial impactswillbeimprovedbyincorporatingmoremarketdisciplineandcommercialacumenintothe traditionallynon‐profitmicrofinancesector.Inotherwords,“thelureofprofit,economistsassume, motivatesallentrepreneursandmanagersandfostersefficientdecisionmakingbyprivatefirms (Weisbrod,1998,p.70).”Thepessimisticviewsuggeststhatthisorientationiseitherdistractingof detractingfromthepursuitofpovertyreductionasanorganizationalgoal.Afterall,“anonprofit 6 organizationhaslittleincentivetoskimponqualityofoutputorotherwisetakeadvantageofpoorly informedcustomers(Weisbrod,1998,p.70).”Intheformercase,afocusonprofitstendstolead MFIsawayfromthecommitmentthatimprovestheirabilitytoeffectivelylendtothepoorwhilethe lattersuggeststhatadesiretoimproveprofitabilitywillleadtodeliberatechoicestocutservicesor raiseinterestratestomeetthedemandsofhigherprofitability. Themiddlegroundbetweenthesetwopositions(andthusthenullhypothesisinallthat follows)suggeststhatdebatesabouttheimplicationsofprofit‐seekingarequiteirrelevant. MerslandandStrom’s(2008a)analysisfoundthattheimpactofanMFI’sadoptingafor‐profit orientationonitsperformanceiseffectivelynull.Thiscentristpositionisbasedonthebeliefthat nonprofitandprofit‐orientedMFIscanbeequallyconcernedwithbothalleviatingpovertyand financialsustainability:“Apriori,onewouldconsiderthatSHFsaremoreprofit‐orientedthan NGOs.Similarly,thatNGOsshouldcaremoreaboutreachingthepoorestclientsthanSHFs… However,analternativehypothesismaybethatSHFsandNGOsdonotperformdifferently,because theymayusethesamebusinessmodeltocompeteandservecustomersinthemicrofinancemarket (Mersland&Strøm,2008b).” Giventheunsettleddebatesandtherelativepaucityofsystematicempiricalanalysis (Hermes&Lensink,2007,pg.F2),thefollowingsectionsprovideacomprehensiveanalysisofthe implicationsforeffectiveinterestratesofanMFIhavingastrongerprofitorientation. 3.DATAANDSAMPLE OuranalysiscombinestwodifferentMIXdatasources(www.mixmarket.org):theirarchiveofMFI financialinformationandtheirmorerecentSocialPerformanceReports.Theselatterreports capturedetailedinformationaboutspecificchoicesandconfigurationsthatpertaintoanMFI’s socialorientation.The358MFIsinoursampleallcompletedSocialPerformanceReportsin2008or 2009andhadcorrespondingfinancialdatafor2009.Toassesstherepresentativenessofthis 7 sample,wecompareittothebroadersampleofallMFIsinthe2009MIXfinancialinformationfile andfindittobebroadlycomparable(seetable1). Table1abouthere OuranalysisfocusesononevariablethathasdirectimplicationsfortheclientsofMFIs–the effectiveinterestratechargedonthefundsthattheyborrow.Followingacceptedpractice (Gonzalez,2010),oureffectiveinterestratevariableisrealtotalearnedinterestincomeandfees dividedbytheaveragegrossloanportfolio.AmongthesampledMFIs,theaverageeffectiveinterest rateis28.06%. TheMIXdataalsoreporttheprofitstatusofeachMFI.Weusethisinformationtocreatea ‘For‐profitMFI’dummyvariablesettooneforMFIsthatoperateasfor‐profitorganizations. Accordingtotable1,35%ofthesampledMFIsarefor‐profitorganizations.TheMIXSocial PerformanceReportsaskrespondentsseveralquestionsaboutthecompositionoftheirboards. Twoquestionsaresalientforthisanalysis.ThefirstaskswhetheranMFI’sboardhasprivatesector representationandthesecondaskswhetherbankingacumenispresentontheboard.Weusethis informationtocreatetwoadditionaldummyvariables:‘Privatesectoronboard’and‘Banking acumenonboard’. Finally,theMIXwebsitereportsonthecompositionofroughly100networksupport organizationsthatworkwithMFIsaroundtheworld.Thesenetworks“facilitateandprovide supporttoorganizationsthatarecommittedtodeliveringfinancialservicestothepoor,”andcanbe national,regionalorinternationalinorientation(Cook&Isern,2004,pp.,pg.3).Theyrangeinsize fromfourtomorethan150membersandprovidearangeofservicestotheirmembers,including financialandtechnicalservices,knowledgemanagement,researchanddevelopmentandpolicy advocacy.AfterrecordingthenamesofallMFIsparticipatingineachnetwork,wecountthetotal numberoffor‐profitMFIsthatafocalMFIistiedtobysharednetworkaffiliation.Themaximum numberoffor‐profittiesis56andsowedividetheobservednumberoftiesforeachsampledMFI 8 by56toobtainanormalizedvariablethatrangesfromzero(notiestofor‐profitMFIs)toone(the maximumnumberofobservedties). Differingsocialandeconomicconditionsacrosscountriesandregionshaveimplicationsfor thesupplyofanddemandformicro‐lending(Ahlin,Lin,&Maio,2011).Wecontrolforlocating acrossthesixregionsisolatedintheMIXdatabases–Africa,EastAsiaandthePacific,Eastern EuropeandCentralAsia,LatinAmericaandTheCaribbean,MiddleEastandNorthAfricaandSouth Asia–withaseriesofregionfixedeffects.Atthecountrylevel,weaccountforlocaleconomicand politicalproblemsbytakingtheaverageofthesixdimensionsoftheWorldBank’sWorldwide GovernanceIndicator(http://info.worldbank.org/governance/wgi/index.asp):voiceand accountability,politicalstabilityandabsenceofviolence,governmenteffectiveness,regulatory quality,ruleoflawandcontrolofcorruption.Becausetotalpopulationinfluencesthedemandfor microcredit,wealsocontrolforthenaturallogofeachcountry’stotalpopulationin2009. Prevailinginterestratesshouldalsobeinfluencedbythedegreeofmicrofinancesector competition.Followingalargebodyoforganizationalecologyresearch(Hannan&Freeman,1989), weproxyforthedegreeofcompetitionbycountingthenumberofMFIsactiveineachcountryin 2009(asreportedintheMIXdatabase).Theoverallcountrangesfromalowofone(inTunisia)toa highof163(inIndia).Giventhedebatesaboutthedifferentialcompetitivenessoffor‐profitand nonprofitMFIs,wedecomposethisvariableintofor‐profitandnonprofitdensitymeasures.In doingso,weseethatsomecountries,likeIndia,havelargenumbersofbothfor‐profits(62)and nonprofits(95).Mexicohasmanyfor‐profits(55)butrelativelyfewnonprofits(ten).Ontheother hand,Bangladeshhasmanynonprofits(70)butrelativelyfewfor‐profits(3). Duetoeconomiesofscaleandexperienceeffects,largerandolderMFIsshouldbemore efficient(Gonzalez,2007).Wethereforeaccountforthesize(naturallogofassets)andage(natural logoftheyearssinceanMFIstarteditsmicrofinanceoperations)ofeachMFI.Thereisalsointerest intheroleplayedbyregulationinshapingthebehaviorandperformanceofMFIs(Cull,Demirguc‐ 9 Kunt,&Morduch,2011).Weincludeadummyvariablesettooneforbanksthatreportedbeing undertheinfluenceofaregulatoryauthorityin2009. MFIsalsovaryinthecomplexityandscopeoftheirofferings.Inthisregard,twovariables thatmightinfluencethecostandperformanceofMFIsaretheextenttowhichtheyalsoengagein deposit‐takingactivitiesandtheiroutreachlevels.Tocapturetheformereffect,weincludea variablethatmeasuresthesavingsdeposits‐to‐assetsratioforeachMFI.Weproxyforthedegreeof outreach(intermsofnumberofindividualstouched)byincludinganotherdummyvariablesetto oneforMFIsthatarereportedintheMIXdatabaseashavingeithermediumorlargeoutreach levels. Commentatorsalsonotethatcostsandthereforeinterestratescanbeinfluencedbyseveral variablesassociatedwiththedegreeofdifficultyassociatedwithprovidingmicroloansacross differentclientsegments(Mersland&Strøm,2010,pp.,pg.35).Absentdirectmeasuresofthe extenttowhichanMFItargetsmarginalizedclients,acceptedproxiesincludeaverageloansize, targetingwomenborrowersandtargetingindividualsinruralareas(Cull,etal.,2009).Ouraverage loansizevariableisthemedianloansizeaspercentageofcountrygrossnationalincomepercapita (Gonzalez,2010).ThefractionofwomenborrowersisreportedinMIXastheshareofoutstanding loansheldbywomenborrowers.TheSocialPerformanceReportsaskrespondentswhethertheir MFItargetsruralclients.Weusethisinformationtocreateanotherdummyvariable.Finally, publishedmissionstatementsprovidesomeindicationoftheextenttowhichpovertyalleviationis acentralconcernforanMFI.WeexaminethemissionstatementofeachMFIandisolatethosethat explicitlymentionpoorclientsorpovertyalleviation. OurfinalcontrolvariablerelatestothelendingmodeladoptedbyeachMFI.Following HermesandLensink’s(2007)discussionofgroup(orjointliability)lending,weincludeavariable thatindicateswhetheranMFIemploysindividual,asopposedtogrouporvillagelendingpractices. Table2reportsdescriptivestatisticsfor,andpair‐wisecorrelationsamongallofthe 10 variablesinouranalysis. Table2abouthere 4.ANALYSISANDRESULTS Webeginbyenteringthecontrolvariablesintoanordinaryleastsquaresregressionmodel (seemodel1intable3).Thesignificantcoefficientsrevealaninterestingasymmetrybetweenthe estimatedeffectsoffor‐profitversusnonprofitcompetition.Thelatternegativeeffectisconsistent withexpectations.GreatercompetitionfromlargernumbersofnonprofitMFIsdrivesdown effectiveinterestrates.However,theestimatedeffectisoppositeforthefor‐profitcompetition variable.Werevisitthesetworesults–whicharerobustacrossthevariousmodelsthatwe estimate–intheconcludingsectionofthepaper.TheMFIsizevariablehastheexpectednegative effectoninterestrates.Asexpected,MFIsthatoffermorecost‐effectivelargerloansalsocharge lowerinterestrates.Ontheotherhand,interestratesaresignificantlyhigheramongtheMFIsthat havemediumorlargeoutreachlevels,thosethattargetwomenclients,andthosethatemphasize poverty‐reductionintheirmissionstatements. Table3abouthere WeareprimarilyinterestedintheorganizationalchoicesmadebyMFIsthatindicatea strongercommitmenttoprofitability:adoptingthefor‐profitstatus,havingprivate‐sector representationandbankingacumenonboards,andhavingmoreextensivetiestootherfor‐profit MFIs.Model2introducesthesevariablesintotheeffectiveinterestratemodel.1Thefor‐profitMFI variableispositivebutnotstatisticallysignificantatconventionallevels(p=.0.11).Moreover,each ofthethreeboardandnetworkvariablesinflateseffectiveinterestrates.Havingprivatesector 1Givenconcernsaboutmulticollinearity,wecheckedthevarianceinflationfactors(VIFs)andfoundthe highest(5.02)tobewithintheacceptablerange.Wealsoestimatedfourseparatemodelsthatenteredeachof theprofit‐orientationsvariablesindividuallyandobtainedthesameresults.Finally,weestimatedan (unreported)modelthatremovedoutlierobservations(i.e.,thoseforwhichtheresidualismorethantwo standarddeviationsawayfromzero)andobtainedthesamepatternofresults. 11 representationontheboardcorrespondswithanestimatedincreaseintheeffectiveinterestrateof 3.53percentagepoints.Ensuringthattheboardhasbankingacumencorrespondswithalarger 4.06percentagepointincrease.Finally,increasingtiestootherfor‐profitMFIsfromzerotothe maximumlevelcorrespondstoa6.97percentagepointincreaseineffectiveinterestrates.2 Giventhesimilarmagnitudesoftheestimatedboardandnetworkeffects,weperformedan F‐testtoassessthenullhypothesisthattheircoefficientestimatesareequal.Thistestcannotreject thenullhypothesisofequaleffects(F=0.57;p=0.57).Wethereforesumthethreevariablesintoa singleindexthatreflectstheoverallprofitorientationofeachMFI.Thisvariablerangesfromalow ofzero(ineightobservations)toahighof2.96,andaverages1.44.Closerinspectionshowsthatthis profitorientationvariableissignificantlyhigheramongthefor‐profitMFIs;averaging1.71 comparedto1.29forthenonprofitMFIs(t=5.33;p=0.00).Whentheoverallprofitorientationindex issubstitutedintomodel2,itseffectispositiveandsignificant;aunitincreasecorrespondingtoa 4.05percentagepointincreaseineffectiveinterestrates(seemodel3). SomeresearchersexpressconcernsaboutdataqualityinmodelsevaluatingMFI performance(Mersland&Strøm,2010).Wethereforeestimatedan(unreported)variantofmodel 3basedonthe310MFIsthatreceivedfourorfivestarsfordataqualityfromMIX.Theresultsare virtuallyidenticaltothosereportedinmodel3.Two‐thirdsofthenonprofitMFIsinthissampleare NGOs,withcreditunions/cooperativesandnon‐bankfinancialinstitutionscomprisingthe remainingthird.Roughly80%ofthefor‐profitMFIsarenon‐bankfinancialinstitutions.The remainingfor‐profitMFIsareeitherbanksorruralbanks.3Toensurethatourresultsarenotan artifactofthelegalformadoptedbythesampledMFIs,werananother(unreported)modelthat 2Toassesswhetherthenetworktieseffectsimplyreflectstheoveralldegreeofconnectedness,wecreateda secondnetworkvariablethatrangesfromzerotooneasanMFImovesfromhavingnotiestoothernon‐ profitMFIstoonewhenithasthemaximumnumberofobservedties(131).Inanunreportedmodel,the coefficientonthisnewvariableisnegativeandinsignificant(=‐1.55;p=0.68)whilethemagnitudeand significanceofthefor‐profittievariableremainspositiveandmarginallysignificant(=7.89;p=0.03). 3 ThisdistributionoflegalformsinthissampleisqualitativelysimilartothatreportedbyCulletal(2009). 12 includesdummyvariablesforeachlegalform.Again,theresultsreportedinmodel3arereplicated. Finally,toensurethattheestimatedeffectsoftheprofitorientationvariablesarerobust,we estimatedavariantofmodel3thatreplacesallregionandcountrycontrolvariableswithasetof countryfixedeffects(seemodel4).Becauseweonlyincludeobservationsfromcountriesthathave atleastthreesampledMFIs,thisreducesthesampleto339MFIs.Again,theresultsfrommodel3 arereplicated.Inthismodelaunitincreaseintheprofitorientationvariablecorrespondswitha 3.60percentagepointincreaseineffectiveinterestrateschargedtoMFIclients. OneofourbasicpremisesisthattheorganizationalchoicesthatMFIsmaketoincorporatea strongerprofitorientationcanhaveimplicationsaboveandbeyondthatofadoptingthefor‐profit form.GivenpressuresonnonprofitMFIstoactmoreliketheirmarket‐orientedfor‐profit counterparts,thesechoicesshouldalsoinfluencetheirbehaviorandperformance.Model5(intable 4)re‐estimatesmodel3usingthesub‐sampleofnonprofitMFIsandshowsasimilarpatternof effects.Thistime,aunitincreaseintheprofitorientationvariableisassociatedwithamore substantial5.00percentagepointincreaseineffectiveinterestrates.Inthesub‐sampleof127for‐ profitMFIs,theeffectofastrongerprofitorientationisstillpositive,althoughnolongerstatistically significant.Itseemsthatthemoredamagingeffectsofastrongerprofitorientation(intermsof higherinterestrateschargedtoclients)areconfinedtononprofitMFIs,althoughitisinstructiveto observethatamongthefor‐profitMFIs,thevariablesthatoughttocorrelatewithimproved businessandbankingacumendonothelptolowertheinterestratevariable. Table4abouthere Manyoftheclaimsabouttheimportanceofastrongerprofitorientationrelatestothe abilityofMFIstoencouragemoreinvestmenttoflowintothesector.Insupportofthisclaim,table 2showsthatfor‐profitMFIstendtobelargerthantheirnonprofitcounterpartsandtendtooperate inmorepopulouscountries.Extendingthislineofthought,itisplausiblethatthestrongerprofit orientationismoresuitedtolargerMFIsize.Wemightthereforeexpecttoseetheeffectsofthe 13 profitorientationvariablesdisappearorreverseinthesub‐sampleofMFIsthatareabovethe mediansamplesize.Inmodel7,wedoseeareductionintheestimatedeffectsizeoftheprofit orientationvariable.Relativetothesub‐sampleofsmallerMFIs,theadverseeffectofastronger profitorientationisroughlyhalved;producinga2.23percentagepointincreasecomparedtoa5.44 percentagepointincreaseinthesmallerMFIsub‐sample.However,althoughtheadverseeffectof theprofitorientationvariableoninterestratesislesspronounceditisstillsignificant. (a)CostsandSustainability EffectiveinterestratesarethesumofprofitsearnedplusthreemajorcomponentsofanMFI’scosts: operatingexpenses,financialexpensesandlossesduetoloanimpairment.Wecontinueour analysisbylookingathowthevariablesinmodel3alsoinfluencethesethreecostcomponents. Operatingexpensesarelargelyafunctionofsalariesandstaffproductivity(Gonzalez,2010).Thus, theoperatingexpensevariablethatweanalyzeisthesumofthesenon‐financialexpenses(plus depreciationandamortizationandotheradministrativeexpenses)dividedbytheaveragegross loanportfolio(Mersland&Strøm,2008a).Thevariablethatcapturesfinancialexpensesis calculatedasthetotalfinancialexpensesrelativetotheaveragegrossloanportfolio.Finally,the loanlossesvariableisthesimilarratioofthevalueofloanswritten‐offdividedbytheaveragegross loanportfolio. Giventheobviousinterdependenceamongthesethreecostvariables,weestimatethe effectsofourcovariatesinaseemingly‐unrelatedregressionframework(Zellner,1962).The resultsfromthissystemofequations–presentedasmodel8intable5–suggestthatmostofthe systematicvarianceinMFIcostspertainstooperatingexpenses.Havingmorenonprofit competitioninacountrycorrespondswithloweroperatingexpenseratios.Thefor‐profitMFI competitionvariablehasnodiscernibleeffect.TheMFIsizevariablehasanegativeandsignificant effectonoperatingexpenses,corroboratingexpectationsabouteconomiesofscaleintheMFI 14 sector.Thereisalsoevidenceofthedocumentedtrade‐offbetweenfocusingonpovertyalleviation andcostefficiency(Hermes,Lensink,&Meesters,2011).Theestimatedeffectsoftargetingwomen borrowersandemphasizingpovertyreductioninthemissionstatementarepositiveandsignificant intheoperatingexpensesequation.Ontheotherhand,thedecisiontotargetruralclientshasa marginallynegativeeffect,perhapsduetolowerlandandlaborcostsinless‐developedareas. Finally,takinginmoredeposits,andtherebyincreasingorganizationalcomplexity,corresponds withhigheraverageoperatingexpenses. Table5abouthere Turningtothevariablesofinterest,theprofitorientationvariableisassociatedwith significantlyhigheroperatingexpenses(=5.77)andhigherloanimpairmentexpenses(=0.67).Its effectonfinancialexpensesisalsopositivebutnotsignificant.Theestimatedeffectofthefor‐profit MFIvariableisalsopositiveinallthreeequations,albeitonlymarginallysignificantinthefinancial expensesequation.Thus,thereisnoevidenceoftheexpectedefficiencybenefitsofadoptinga strongerprofitorientation.ThesefindingsareconsistentwithHudonandTraça(2011),whofind thatMFIsthatreceivehigherlevelsofsubsidies–whichareprobablythelessprofit‐orientedMFIs inthissample–areactuallymoreefficient.Moregenerally,thepatternreinforcesacorefindingof MerslandandStrom(2008b),whofindnoevidencethatshareholder‐ownedMFIsare systematicallymorecost‐effectivethantheirNGOcounterparts. OnejustificationforthehigherinterestrateschargedbyMFIswhodemonstrateastronger commitmenttoprofitabilityrelatestotheneedforMFIstobefinanciallysustainable.Intheory,by providingmorebusinessacumenandmarketdiscipline,astrongerprofitorientationreducesthe needforMFIstorelyonsubsidies.Instead,higherinterestratesand/orlowercostsallowthemto earnthesurplusesthatallowthemtosustainoperationsontheirownterms. AnMFI’sfinancialself‐sufficiencyratioequalsitsnetincomedividedbyitstotalcosts. ValuesgreaterthanoneindicatethatanMFIisabletocoveritscostsandthereforesustainitself 15 overtime.WecreateadummyvariablesettooneforMFIswithfinancialself‐sufficiencyratios greaterthanoneandanalyzeitscovariatesinalogisticregressionmodel.Arguably,thesearethe MFIsthatgeneratedenoughprofitin2009tosustainthemselvesovertime.Thesignificant coefficientsinmodel10(intable6)suggestthatgreatercompetitionfromotherfor‐profitMFIs increasestheprobabilitythananMFIisfinanciallyself‐sustaining.Whetherornotavariableleads tosignificantfinancialsustainabilitydifferencesdependsontheextenttowhichtheestimated interestrateandcosteffectsoffsetoneanother.Inthisrespect,thefactthatcompetitionfromother for‐profitMFIsincreasesthelikelihoodthatanMFIwillbefinanciallyself‐sustainingisexplainedby thefactthatitsestimatedimpactoninterestrates(=0.27inmodel3)isgreaterthatthe correspondingeffectsoncosts(consistentlynullacrossthethreeequationsinmodel9).Onthe otherhand,emphasizingwomeninlendingportfoliosandpoverty‐alleviationinmission statementsbothreducethelikelihoodthatanMFIisfinanciallyself‐sustaining.MFIsthatplace greateremphasisonwomentendtohavehigheroperatingcosts(=18.90intheoperating expensesequationinmodel9)thatarenotfullyaccountedforbytherelativelyhigherinterestrates thattheychargetheirclients(=9.11inmodel3).Thisleadstotheoverallnegativeeffectonthe probabilityofbeingfinanciallyself‐sustaining.AsimilarsetofobservationsappliestoMFIsthat emphasizepovertyintheirmissionstatements. Table6abouthere Theprofitorientationvariableexertsnosignificanteffectonsustainability.Thisoverallnull effectisexplainedbythefactthatthepositiveeffectoninterestratescharged(=4.05inmodel3) ismorethanfullyoffsetbyitsadverseeffectsonoperatingexpensesandloanimpairmentexpenses (=5.77and=0.23respectivelyinmodel9).Similarly(althoughestimatedwithlessprovision)for‐ profitMFIstendtochargehigherinterestratesbutalsooperatewithhigherexpenses,especially financialexpenses. 16 5.DISCUSSIONANDCONCLUSION “Areviewofmicrofinancepolicyreportsrevealsthatmostofthemhighlightthe strengthsofSHFsandtheweaknessesofNGOs.Inparticular,theyemphasisthatNGOs arelesscommercialandprofessionalbecausetheylackownerswiththepecuniary incentivetomonitormanagement(Mersland&Strøm,2008b).” Asthemicrofinancesectormatures,morequestionswillbeaskedaboutwhetheritisevolvingina waythatadvantagesthepoorestpeopleontheplanet.Inparticular,weexpectthat“theroleof fully‐commercial,profit‐seekinginstitutionsinprovidingsuchmicrofinanceloans[willcontinueto be]controversial(Cull,etal.,2009).”Profit‐orientedMFIsareexpectedtobemoreefficientbut thendistributemoreoftheirearnedsurplustooutsideshareholders.Nonprofitsareexpectedtobe lessconcernedaboutgeneratingsurplusforownersbutalsolessoperationallyefficient. Thebaselineexpectationsabouttheeffectsofastrongerprofitorientation–whichhave beenchallengedelsewhere–arenotatallsupportedinthisanalysis.Thevariablesthatsuggesta strongerprofitorientationdonotloweranyofthemajorcomponentsofanMFI’scost.Nordothey significantlyimproveMFIsustainability.Theonlythingthatwecanconcludeisthattheeffective interestrateschargedbyMFIswithstrongerprofitorientationsaresignificantlyhigheronaverage. Inlightofthepersistentcommentaryregardingtheneedforamoremarket‐basedorientationin thesector,thisoffersasomewhatsoberingaccountoftheimplicationsofMFIshavingstrongerfor‐ profitorientations. Theeffectsrevealedinthisanalysissuggeststhatadvisoryinputsfromindividualswith private‐sectorbackgrounds,withtraditionalbankingacumenorexperiencerunningfor‐profitMFIs donothelpMFIsnavigatethetrade‐offsbetweenefficientservicedeliveryontheonehandand organizationalsustainabilityontheother.TheyalsoreinforceanobservationmadebyArmendariz andMorduch(2005),whonotehow“pioneeringmodelsgrewoutofexperimentationinlow‐ incomecountries…ratherthanfromadaptationsofstandardbankingmodelsinrichercountries.” 17 Itseemsthattheinsightsthatarerequiredtoachievepovertyalleviationalongwithfinancial sustainabilitywillsimilarlynotcomefromtheimportationofadvicefromthosefamiliarwith standardbankingmodels. Thevariablesthatindicateastrongerprofitorientationneverseemtoproducetheexpected benefitsforMFIclients.So,weconcludethepaperbyjoiningothersinstressingthat“ratherthan concentratingonanMFIs‘commercialization,’attentionshouldbefocusedonhowtoreducecosts perclient(Mersland&Strøm,2010,pg.35).”Giventhestrongcorrespondencebetweenvariables thatsystematicallyinfluencebothMFIcostsandeffectiveinterestrates,itseemsthatdiscussionsof howtostimulatestrongerprofitorientationsshouldbereplacedwiththosewhichmoredirectly addressMFIefficiency.Forinstance,considerationmightbegiventohowonemightinducemore nonprofitcompetition,ortoeffectivelyscalingefficientandeffectiveMFIs–bothnonprofitandfor‐ profit–asbothofthesevariablesseemtoreduceoperatingcostsandlowereffectiveinterestrates (thelatterwithincreasedprofitability). Otherfindingsfromtables3and4warrantfurtherscrutiny.Consider,forexample,the asymmetriceffectsofthelevelsoffor‐profitandnonprofitcompetition.Theresultsthatpertainto nonprofitcompetitionareconsistentwithourunderstandingofhowmarketsaresupposedto operate.GreaternumbersofsuppliersforceMFIstobecomemorecostefficientinordertoattract clients.Thecombinationofcompetitionandinducedefficienciesdrivesdowneffectiveinterest rates.Thisisthespecificdynamicthatcommentatorswanttoseewithinthesector.However,the correspondingeffectsofincreasednumbersoffor‐profitMFIsarecounter‐intuitive.Here,larger numberstendtocorrespondwithsignificantlyhighereffectiveinterestrates(forallMFIsandfor thesub‐sampleofnonprofitMFIs)andhigherMFIprofitability.Thisresultissorobustinthesedata thatitseemsoddtoequatetheincreasednumbersoffor‐profitMFIswithincreasedMFI competition.Theseasymmetriccompetitiveeffectsareclearlyworthyoffurtheranalysis.Inthe meantime,wemustquestionthenetbenefitofinducinggreaterparticipationofMFIswithstronger 18 profitorientations.Inadditiontotheiradversedirecteffectsoninterestrates,theirproliferationin acountryleadstoevenfurtherinterestrateincreases. Inclosing,weproposethatthiskindofresearchallowspractitionersandcommentatorsto lookbeneathbroadgeneralizationsaboutthedirectionofthemicrofinancesectorandappreciate thediversityinobservedoutcomesthatareattributabletothemorespecificchoicesthatbothfor‐ profitandnonprofitMFIsmake.Inthisrespect,itmaynotbethatimportanttodeterminewhether, onaverage,theMFIsectorisexperiencewhatsomearecallingmissiondrift.Itmaynotevenbe importanttoascertainwhether,onaverage,for‐profitandnonprofitMFIsaremakingdifferent choicesandtrade‐offs.Whatisimportantistheknowledgeofhowthespecificdecisionstakenby MFIsareabletomoreorlesseffectivelymeetthetwinchallengesofaddressingpovertywhile sustainingandscalingtheseimpacts. Thatsaid,wemustalsostresstheneedforanappropriateinterpretationofthesecross‐ sectionalresults.Allwecansayforsureisthatin2009,MFIsthatdisplayedstrongerprofit orientationstendedtochargehighereffectiverateswhileoperatingathighercost.Thesefindings aregermanetothosethatseektoofferadviceonwhatkindsofMFIstendtoproducewhatkindsof performanceoutcomesandsocialimpacts.Theyarealsoimportanttothoseresponsiblefor directingfundstowardmoreimpactfulandsustainableMFIs.Here,onemightstresstheneedfor thosewithavailablefunds–evenfundsthatseekmarketreturns–lookpastthefor‐profitversus nonprofitdistinctionandlooktolendtoMFIsthatareoperatingefficientlyandpricing competitively.However,ourresultsaresilentonthecausaleffectsofanindividualMFImoving toward(orawayfrom)astrongerfor‐profitorientation.Addressingthiskindofquestion,whichis clearlypartofthepolicyquestionsthatpertaintohowexistingMFIsmightbetterservetheir clients,requiresalongitudinalanalysisofMFI’sthatswitchtobecomefor‐profitorganizations,that changethecompositionoftheirboards,orthatchangetheextenttowhichtheirnetworksare dominatedbyfor‐profitMFIs.Giventhebenefitsassociatedwithisolatingsuchexogenousimpacts 19 onMFIbehaviorandperformance,thiskindofdataandanalysiswillbemostuseful,andwillsurely addrigortothedebatesaddressedinthispaper. 20 TABLE1.CURRENTSAMPLE N Shareoffor‐profitMFIs Averageassets(log) Averageeffectiveinterestrate Sample 358 35% 16.34 28.06 AllMIX Market (2009) 1,169 42% 15.84 25.38 21 TABLE2.DESCRIPTIVESANDCORRELATIONS (0)Effectiveinterestrate (1)Countryproblems (2)Countrypopulation(log) (3)For‐ProfitMFIsincountry (4)NonprofitMFIsincountry (8)Assets(log) (9)Age(log) (5)Regulated (6)DepositstoAssets (7)Medium/LargeOutreach (10)Averageloansize(log) (11)Fractionwomenborrowers (12)Poor/povertyinmission (13)Targetruralclients (14)Lendtoindividuals (15)For‐profitMFI (16)Privatesectoronboard (17)Bankingacumenonboard (18)Tiestofor‐profitMFIs(norm) Mean 28.06 65.38 3.27 15.93 25.37 16.34 2.43 0.54 0.15 0.60 0.33 0.62 0.44 0.77 0.88 0.35 0.36 0.82 0.26 (0) ‐0.15 ‐0.03 0.17 ‐0.27 ‐0.30 ‐0.06 ‐0.17 ‐0.20 0.00 ‐0.35 0.29 0.16 ‐0.06 ‐0.12 ‐0.01 0.11 0.17 0.18 (1) ‐0.12 ‐0.19 0.00 ‐0.02 ‐0.05 0.06 0.19 0.03 0.20 ‐0.11 ‐0.02 0.09 0.15 ‐0.01 0.02 ‐0.03 ‐0.13 (2) 0.67 0.59 0.09 ‐0.10 0.06 0.05 0.16 ‐0.30 0.32 0.25 ‐0.18 ‐0.28 0.18 0.12 0.17 ‐0.02 (3) 0.51 0.10 ‐0.15 0.15 0.06 0.22 ‐0.23 0.32 0.17 ‐0.08 ‐0.24 0.31 0.19 0.20 0.25 (4) 0.18 0.02 ‐0.05 0.06 0.15 ‐0.20 0.33 0.18 0.00 ‐0.20 0.03 0.08 0.02 0.02 (5) 0.22 0.35 0.31 0.66 0.29 ‐0.07 0.00 0.12 0.10 0.25 0.09 0.18 0.32 (6) ‐0.18 0.18 0.09 0.01 0.02 ‐0.08 0.14 0.08 ‐0.30 ‐0.20 ‐0.12 0.08 (7) 0.20 0.21 0.25 ‐0.23 ‐0.08 0.00 0.11 0.50 0.14 0.18 0.20 (8) 0.10 0.27 ‐0.23 ‐0.12 ‐0.04 0.14 0.11 ‐0.11 ‐0.06 ‐0.08 (9) ‐0.05 0.21 0.22 0.12 ‐0.13 0.12 0.24 0.25 0.28 (10) ‐0.50 ‐0.24 0.00 0.25 0.20 ‐0.03 ‐0.09 ‐0.05 (11) 0.33 0.04 ‐0.36 ‐0.15 0.17 0.13 0.14 (12) 0.08 ‐0.24 ‐0.09 0.10 0.08 0.00 (13) 0.06 ‐0.17 ‐0.07 ‐0.08 0.06 (14) 0.08 ‐0.08 ‐0.04 ‐0.02 (15) 0.18 0.22 0.14 (16) 0.28 0.11 (17) 0.13 22 TABLE3.EFFECTIVEINTERESTRATESCHARGEDBYMICROFINANCEINSTITUTIONS Model1 Model2 Model3 Model4 (Controls) (Profit (Single (Country Orientation) Index) FixedEffects) Countryproblems 0.01 0.01 0.01 ‐ (0.05) (0.05) (0.05) Countrypopulation(log) 0.76 1.08 1.02 ‐ (0.70) (0.69) (0.68) 0.25** 0.27** ‐ For‐ProfitMFIsincountry 0.33** (0.05) (0.05) (0.05) NonprofitMFIsincountry ‐0.26** ‐0.23** ‐0.24** ‐ (0.04) (0.04) (0.04) ‐2.52** ‐2.40** ‐1.21* Assets(log) ‐1.96** (0.59) (0.59) (0.58) (0.55) Age(log) 0.21 0.46 0.61 0.98 (1.01) (1.03) (1.02) (0.97) Regulated ‐0.74 ‐2.26 ‐2.13 ‐2.92¥ (1.57) (1.48) (1.53) (1.52) DepositstoAssets ‐3.39 ‐1.20 ‐1.31 ‐2.67 (3.10) (3.04) (3.03) (3.10) 3.97* 3.92* ‐0.44 Medium/LargeOutreach 5.02** (1.92) (1.89) (1.88) (1.73) ‐8.47** ‐8.76** ‐8.65** Averageloansize(log) ‐8.61** (2.50) (2.45) (2.43) (2.60) ** * * 8.85 9.11 9.91** Fractionwomenborrowers 11.26 (3.01) (2.93) (2.96) (2.97) 4.14** 4.14** 2.72* Poor/povertyinmission 3.86** (1.31) (1.27) (1.27) (1.21) Targetruralclients ‐1.86 ‐0.65 ‐0.67 ‐1.18 (1.43) (1.41) (1.41) (1.34) Lendtoindividuals ‐0.13 ‐0.86 ‐0.83 0.52 (2.02) (1.97) (1.96) (1.80) For‐profitMFI ‐ 2.49 2.46 2.42 (1.55) (1.55) (1.55) 3.60** Profitorientation ‐ ‐ 4.05** (0.88) (0.86) ** ‐ ‐ ‐Privatesectoronboard ‐ 3.53 (1.31) ‐Bankingacumenonboard ‐ 4.06* ‐ ‐ (1.62) ‐Tiestofor‐profitMFIs(norm) ‐ 6.97* ‐ ‐ (2.93) Fixedregioneffects (yes) (yes) (yes) (no) Fixedcountryeffects (no) (no) (no) (yes) N 358 358 358 339 0.48 0.51 0.51 0.65 AdjustedR2 **p<0.01;*p<0.05;¥p<0.10 23 TABLE4.MODERATINGFACTORS:FOR‐PROFITSTATUSANDSIZE Model5 Model6 Model7 Model8 (Nonprofit (For‐Profit (Larger (Smaller MFIs) MFIs) MFIs) MFIs) Countryproblems ‐0.04 0.11 0.01 0.04 (0.06) (0.09) (0.06) (0.07) Countrypopulation(log) 1.16 0.92 0.37 2.14* (0.82) (1.33) (0.85) (1.05) 0.40** 0.37** 0.10 For‐ProfitMFIsincountry 0.12¥ (0.07) (0.09) (0.06) (0.09) ‐0.26** ‐0.27** ‐0.19** NonprofitMFIsincountry ‐0.17** (0.06) (0.06) (0.04) (0.07) ‐2.50** ‐1.59¥ ‐2.44* Assets(log) ‐2.39** (0.82) (0.85) (0.81) (1.18) Age(log) 0.62 1.46 1.76 ‐1.02 (1.36) (1.69) (1.25) (1.60) Regulated ‐0.55 ‐5.19 ‐2.88 ‐3.13 (1.93) (3.25) (1.93) (2.46) DepositstoAssets ‐2.76 ‐1.54 2.52 ‐11.53* (5.60) (4.31) (4.69) (3.48) Medium/LargeOutreach 3.89 2.99 1.58 5.84* (2.94) (2.45) (3.43) (2.73) ‐8.04** ‐9.12** ‐14.86** Averageloansize(log) ‐11.43** (4.15) (3.16) (2.61) (4.78) * * 4.46 8.40 9.92* Fractionwomenborrowers 7.44 (3.76) (5.99) (3.84) (4.79) 3.28* 4.55* Poor/povertyinmission 2.26 6.23** (2.23) (1.50) (2.06) (1.60) Targetruralclients ‐2.02 2.09 1.93 ‐2.67 (1.88) (2.20) (1.71) (2.30) Lendtoindividuals ‐2.31 4.15 ‐2.88 0.83 (2.27) (4.07) (2.61) (2.97) For‐profitMFI ‐ ‐ 2.75 3.29 (1.85) (2.65) 1.51 2.23* 5.44** Profitorientation 5.00** (1.14) (1.48) (1.09) (1.40) Fixedregioneffects (yes) (yes) (yes) (yes) N 231 127 179 179 0.50 0.57 0.53 0.50 AdjustedR2 **p<0.01;*p<0.05;¥p<0.10 24 TABLE5.THREEELEMENTSOFMFICOSTS Model9a Operating Financial Loan Expenses Expenses Impairment ‐0.06¥ 0.03 Countryproblems ‐0.24* (0.11) (0.03) (0.02) 0.32 0.06 Countrypopulation(log) 3.04* (1.52) (0.42) (0.26) For‐ProfitMFIsincountry ‐0.03 0.01 ‐0.02 (0.12) (0.03) (0.02) ‐0.03 ‐0.01 NonprofitMFIsincountry ‐0.35** (0.08) (0.02) (0.01) 0.12 0.01 Assets(log) ‐6.38** (1.30) (0.36) (0.22) Age(log) ‐2.75 ‐0.02 0.33 (2.27) (0.63) (0.39) Regulated ‐2.38 ‐0.48 ‐0.00 (3.41) (0.95) (0.58) 1.49 ‐2.32* DepositstoAssets 16.67** (6.78) (1.88) (1.15) Medium/LargeOutreach 3.02 ‐1.12 0.12 (4.21) (1.17) (0.71) Averageloansize(log) ‐4.05 0.70 0.59 (5.42) (1.50) (0.92) 1.60 0.90 Fractionwomenborrowers 18.90** (6.62) (1.84) (1.12) ‐0.07 0.09 Poor/povertyinmission 11.83** (2.84) (0.79) (0.48) 1.29 ‐0.61 Targetruralclients ‐5.22¥ (3.16) (0.87) (0.54) Lendtoindividuals ‐5.05 ‐0.85 1.20 (4.38) (1.22) (0.74) ¥ 1.86 0.23 For‐profitMFI 3.47 (3.46) (0.96) (0.59) 0.55 0.67* Profitorientation 5.77** (1.97) (0.55) (0.33) Fixedregioneffects (yes) (yes) (yes) N 358 0.37 0.09 0.12 “R2” **p<0.01;*p<0.05;¥p<0.10 aSeeminglyunrelatedregressionmodel 25 TABLE6.SELF‐SUFFICIENCY(SUSTAINABILITY) Model10a Sustainability Pr(F.S.S.>1) Countryproblems 0.01 (0.01) Countrypopulation(log) 0.01 (0.16) For‐ProfitMFIsincountry 0.04** (0.01) NonprofitMFIsincountry 0.00 (0.01) Assets(log) 0.21 (0.15) Age(log) 0.50* (0.25) Regulated 0.01 (0.37) DepositstoAssets 1.85* (0.95) Medium/LargeOutreach 0.20 (0.46) Averageloansize(log) ‐0.49 (0.59) Fractionwomenborrowers ‐1.46* (0.74) Poor/povertyinmission ‐0.66* (0.31) Targetruralclients 0.34 (0.34) Lendtoindividuals ‐0.64 (0.48) For‐profitMFI 0.06 (0.37) Profitorientation ‐0.14 (0.21) Fixedregioneffects (yes) N 358 Log‐Likelihood ‐168.78 **p<0.01;*p<0.05;¥p<0.10 aLogisticregressionmodel 26 REFERENCES Ahlin, C., Lin, J., & Maio, M. (2011). Where does microfinance flourish? Microfinance institution performance in macroeconomic context. Journal of Developmental Economics, 95, 105‐120. Armendariz, B., & Morduch, J. (2005). The Economics of MicroFinance (Second ed.). Cambridge, MA: MIT Press. Brass, D. J., Galaskiewicz, J., Greve, H. R., & Tsai, W. (2004). Taking stock of networks and organizations: A multilevel perspective. Academy of Management Journal, 47, 795‐817. Cook, T., & Isern, J. (2004). What Is a Network? The Diversity of Networks in Microfinance Today. Copestake, J. (2007). Mainstreaming microfinance: Social performance management or mission drift? World Development, 35, 1721‐1738. Cull, R., Demirguc‐Kunt, A., & Morduch, J. (2009). Microfinance meets the market. Journal of Economic Perspectives, 23, 167‐192. Cull, R., Demirguc‐Kunt, A., & Morduch, J. (2011). Does Regulatory Supervision Curtail Microfinance Profitability and Outreach? . World Development, 39, 949‐965. Gonzalez, A. (2007). Efficiency drivers of microfinance institutions (MFIs): The case of operating costs.Unpublished manuscript. Gonzalez, A. (2010). Analyzing microcredit interest rates: A review of the methodology proposed by Mohammed Yunus.Unpublished manuscript. Hannan, M. T., & Freeman, J. (1989). Organizational Ecology. Cambridge, MA: Harvard University Press. Hermes, N., & Lensink, R. (2007). The empirics of microfinance: what do we know? The Economic Journal, 117, F1‐F10. Hermes, N., Lensink, R., & Meesters, A. (2011). Outreach and efficiency of microfinance institutions. World Development, 39, 938‐948. Hudon, M., & Traça, D. (2011). On the efficiency effects of subsidies in microfinance: An empirical inquiry. World Development, 39, 966‐973. Mersland, R., & Strøm, R. Ø. (2008a). Performance and governance in microfinance institutions. Journal of Banking and Finance, 33, 662‐669. Mersland, R., & Strøm, R. Ø. (2008b). Performance and trade‐offs in microfinance organisations—Does ownership matter? Journal of International Development, 20, 598‐612. Mersland, R., & Strøm, R. Ø. (2010). Microfinance mission drift? World Development, 38, 28‐36. Morduch, J. (2000). The microfinance schism. World Development, 28, 617‐629. Owen‐Smith, J., & Powell, W. W. (2004). Knowledge networks as channels and conduits: The effects of spillovers in the Boston biotechnology community. Organization Science, 15, 5‐21. Weisbrod, B. A. (1998). Institutional form and organizational behavior. In W. W. Powell & E. S. Clemen (Eds.), Private Action and the Public Good (pp. 69‐84). New Haven, CT: Yale University Press. Yunus, M. (2011, January 14, 2011). Sacrificing Microcredit for Megaprofits. New York Times, Zellner, A. (1962). An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association, 57, 348‐368. 27
© Copyright 2026 Paperzz