6nh3 hpo4.2h2o

March 2002
Phys. Chem. News 5 (2002) 91-98
PCN
STRUCTURAL AND THERMAL STUDIES OF A NEW ORGANIC
MONOPHOSPHATE NH3(CH2)6NH3 HPO4.2H2O
M. Belhouchet, M. Gargouri, T. Mhiri*, A. Daoud
Laboratoire de l’Etat Solide, Faculté des sciences de Sfax, Université de Sfax, 3018 Sfax, Tunisia
* Corresponding Author. E-mail: [email protected]
Dedicated to Dr: H. Mhiri
Received : 04 October 2001; revised version accepted 29 January 2002
Abstract
A new tridimensional organic monophosphate, NH3(CH2)6NH3 HPO4.2H2O was synthesized by slow
evaporation at room temperature of the system NH2(CH2)6NH2 - H3PO4 - H2O. It crystallizes in the
triclinic space group P 1 with lattice parameters a = 10.187(2)Å, b = 11.084(3)Å, c = 12.627(2)Å,
α = 110.70(2)°, β = 108.31(2)°, γ = 96.14(2)°, V = 1227.4(5)Å3, Z = 4, R1 = 0.0372 and wR2 = 0.0866
for 701 observed reflexions. The crystal structure is characterized by the existence of [H2P2O8]4- clusters,
resulting from the association of two [HPO4 ]2- tetrahedra related by one O-H...O hydrogen bond, linked
with two water molecules forming an infinite zigzag centrosymetric chains, related themselves with two
water molecules, building three dimensional anionic layers parallel to the (010) plane. Organic dications,
encapsulated between two anionic layers, are linked to [HPO4 ]2- groups using N-H...O hydrogen bonds.
Keywords : Crystal structure; Organic phosphate; TG-DTA.
Schematically the reaction is:
1. Introduction
Since 1987, new series of very stable organic
phosphates
salts
were
synthesized
and
characterized during the interaction of aliphatic
diamine [NH2(CH2)nNH2] with various acidic
monophosphates [1-9]. The crystal structure of
these compounds show alternate planes or chains
of [HPO4]n2n-, [H2PO4]nn-, [HPO4.xH2O]n2nand
[H2PO4.xH2O]nn-, with organic moities. The
present work continues a series of investigations
into the factors influencing the dimensions of
phosphoric anion-organic cation interactions. In
order to study the influence of the length of the
diamine on the structure of the corresponding
compounds, we carried out experiments with
diamines NH2(CH2)nNH2 (n ≥ 5). We report here
the preparation and characterization of a new
organic phosphate synthesized in the system 1, 6
hexane diamine - H3PO4 - H2O as a single crystal.
The compound formula C6H18N2 HPO4.2H2O,
named monohydrogenomonophosphate hexane
1, 6 diammonium dihydrate, here after denoted
DAH-HP.
C6H16N2 + H3PO4
H2O
C6H18N2 HPO4.2H2O
After several days, the solution leads to
transparent prallelipipedic colourless single
crystals of DAH-HP. Their chemical preparation
is reproductible and the crystals obtained in this
way are pure and stable under normal conditions
of temperature and humidity.
2.2 X-ray diffraction
A single crystal of DAH-HP was carefully
selected under a polarising microscope. Intensity
data collection was performed with an Enraf
Nonius CAD4 diffractometer. The average density
value, measured at room temperature with the
toluene as the pycnometric liquid, is in agreement
with the calculated density, the unit formula in the
cell is deduced from this value. The chemical
crystal data, conditions of X-ray diffraction data
collection, the strategy used for the crystal
structure determination and their results are listed
in Table 1.
2. Experimental
2.3 Thermal behavior
2.1 Chemical preparation
SetaramTG-DTA and NETZSCH-DSC (204)
thermoanalysers were used to perform thermal
treatment of DAH-HP. The TG-DTA experiment
was carried out with 14.36 mg sample in an open
alumina crucible. The sample was heated from
room temperature to 523K at 5K/mn in air.
The title compound was synthesized by slow
evaporation at room temperature of an aqueous
solution of phosphoric acid (H3PO4) and the
corresponding organic molecule (NH2(CH2)6NH2,
Aldrich 99%) in the stoichiometric ratio.
91
M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98
Crystal data
Formula: NH3(CH2)6NH3 HPO4.2H2O
Crystal system: Triclinic
a =10.187(2)Å; b = 11.084(3)Å; c = 12.627(2)Å
α = 110.70(2)°. β = 108.31(2)°. γ = 96.14(2)°
ρcal/ρmeas = 1.354/1.33 g.cm-3
Linear absorption factor
Morphology
Intensity measurement
Temperature 293(2) K
Diffractometer: Enraf Nonius CAD4
Monochromator: graphite plate
θ range: 3.18 - 14.67°
Measurement area: -7≤ h≤ 6 ; -7 ≤ k ≤ 7; 0 ≤ l ≤ 8
Number of scanned reflexions: 941
Number of unique reflexions: 872 (Rint = 0.0135)
Structure determination
Structure determination: SHELXS86 [10]
Structure refinement SHELXL93 [11]
Number of observed reflexions (I >2σ): 701
wR2 / R1: 0.0866/ 0.0372
w = 1/[σ2(Fo)2 + (0.0895 P)2 + 0.00 P] ; P = Fo2 + 2Fc2/3
Final Fourier residual: min (-0.125eÅ-3 ), max (0.133eÅ-3 )
Fw = 250.23
Space group: P 1
V = 1227.4(5)Å3
Z=4
F(000) = 544
µ(MoKα) = 0.237 mm-1
Parallelipipedic
Wavelength:MoKα = 0.71069 Å
scan mode:ω/2θ
Table 1: Summary of crystal data, intensity measurements,
and final results for NH3(CH2)6NH3 HPO4.2H2O.
3. Results and discussion
presence of the acidic hydrogen atoms. P-O
distances and O-P-O angles are similar than those
observed in organic phosphates containing the
same anionic moities [3-9, 12]. The short P-P
distance observed in [H2P2O8]4- dimers is
4.818(9)Å, similar than those observed in C2H10N2
HPO4[4], β-NH3(CH2)2NH3 HPO4 [6] and C3H12N2
HPO4.H2O [3]. The organic groups, present as the
dication [NH3(CH2)6NH3]2+, are located between
layers of anionic moities. These cations as shown
in Fig. 3, giving the atomic arrangement, are
anchorded on the anionic chains through N-H...O
hydrogen contacts. The detailed geometry of
[NH3(CH2)6NH3]2+ dications (Table 4) shows that
the unit cell contain two different types of
organic chains: [N(1)-C(i)-N(2) / i=1...6] and
[N(3)-C(i)-N(4) / i=7...12] linking between
[HPO4]2- tetrahedra by N-H...O hydrogen bonds
forming a three dimensionnal network.
The 1, 6-hexane diammonium dications are
presented in the fully extented all trans
conformation as observed in NH3(CH2)4NH3
H2P2O7 [12], NH3(CH2)3NH3 2H2PO4 [2] and
NH3(CH2)3NH3 HPO4.H2O [3]. The torsion angles
are in Table 4. C-C distances, C-C-C and N-C-C
angles in the organic dications are similar than
those observed in compounds containing the same
organic molecules [13-14]. Bond lengths and
3. 1 DAH-HP structure description
The final atomic coordinates and the U
equivalent temperature factors are given in Tables
2 and 3. The structure can be described as being
built up by a linkage between planes of [HPO4]2anions, water molecules and the organic dications
[NH3(CH2)6 NH3]2+.
Fig. 1 displays a projection in the (a,c) plane of
the anionic structure. The [HPO4]2- tetrahedra
are connected together in pairs through one
O-H...O hydrogen bond: O(24)-H(24)...O(13)
forming [H2P2O8]4- clusters (Fig. 2) located at
(100) and (200) planes. Each cluster from the
(200) plane is linked with two clusters from the
(100) plane using two water molecules [O(W2)
and O(W4)] forming an infinite zigzag
centrosymmetric chains parallel to the a axis.
These chains are connected themselves with ten
symmetric hydrogen bonds using O(W3) and
O(W1) water molecules forming a three
dimensional layers parallel to the (010) plane
(Fig. 1).
The detailed geometry of [HPO4]2- tetrahedra
(Table 4) shows that the P-O bonds, with upper
and lower limits [1.505(11), 1.544(9) Å], are
significantly shorter than the P-OH bonds
[1.563(12), 1.582(9) Å] wich is due to the
92
M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98
N(O)...O distance [15-16 ]: dN(O)...O > 2.73Å weak
and dN(O)...O < 2.73Å strong.
The DAH-HP stucture is built by twenty two
hydrogen bonds, five are considered strong and
the others are weak bonds. This structure includes
ten potentiel hydrogen bond donors (four N-H
and six O-H) and eleven oxygen acceptors.
angles in the hydrogen bonding scheme of
DAH-HP are listed in Table 5 with upper limits
respectively of 2.24(2)Å, 178.6(6)° for the H...A
distances H...A distances, D-H...A bond angles
(D: donnor ; A : acceptor) and lower limits of
1.56(2)Å, 137.2(31)°. The hydrogen bonding
strength can be interpreted according to the
Figure 1: Projection along the b direction of the anionic layers showing all the O-H..O bonds. In this figure and
figure 2 large circles represent phosphor atoms, medium circles (oxygen atoms) and small circles ( hydrogen atoms).
93
M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98
Atom
x
P(1)
0.7140(7)
P(2)
0.7633(6)
O(11)
0.7104(17)
O(12)
0.5594(12)
O(13)
0.7917(11)
O(14)
0.7866(8)
O(21)
0.8375(11)
O(22)
0.8288(10)
O(23)
0.6013(11)
O(24)
0.7882(8)
O(W1)
0.4744(16)
O(W2)
1.1176(13)
O(W3)
0.7710(28)
O(W4)
0.6797(15)
N(1)
0.5516(17)
N(2)
0.5621(18)
N(3)
1.0051(16)
N(4)
1.0337(17)
C(1)
0.4637(25)
C(2)
0.5570(22)
C(3)
0.4912(25)
C(4)
0.5801(23)
C(5)
0.5175(26)
C(6)
0.6132(24)
C(7)
1.0917(22)
C(8)
1.0024(24)
C(9)
1.0792(26)
C(10)
0.9855(22)
C(11)
1.0600(25)
C(12)
0.9574(26)
Ueq = 1/3 ∑i ∑jUij ai*aj* ai aj
y
0.5960(6)
0.2000(6)
0.6608(12)
0.5361(9)
0.4841(10)
0.6975(9)
0.3150(11)
0.0796(10)
0.1598(8)
0.2422(8)
-0.5112(16)
0.3268(10)
-0.4919(16)
0.4580(10)
-0.1394(12)
-0.2656(18)
0.1409(17)
0.0729(16)
-0.1535(16)
-0.1437(18)
-0.1700(20)
-0.1660(21)
-0.2103(24)
-0.2092(20)
-0.3445(26)
-0.2818(25)
-0.1974(24)
-0.1388(23)
-0.0495(23)
-0.0048(24)
z
0.9411(6)
1.0107(6)
0.8489(15)
0.9150(8)
0.9172(9)
1.0737(9)
1.1337(11)
0.9977(8)
0.9787(8)
0.9098(9)
0.3968(17)
1.2668(11)
0.4933(20)
1.2488(12)
0.8825(18)
0.1409(17)
0.099(5)
0.8984(20)
0.7603(27)
0.6875(23)
0.5597(27)
0.4897(24)
0.3562(25)
0.2951(25)
0.3011(25)
0.3712(25)
0.5019(23)
0.5697(23)
0.7056(24)
0.7639(23)
Ueq (Å2 )
0.096(2)
0.089(2)
0.131(4)
0.108(4)
0.107(4)
0.085(3)
0.110(4)
0.103(4)
0.098(4)
0.089(3)
0.112(8)
0.092(8)
0.108(11)
0.100(4)
0.095(5)
0.099(5)
0.099(5)
0.096(5)
0.098(6)
0.088(6)
0.100(6)
0.083(5)
0.097(6)
0.102(6)
0.101(6)
0.112(6)
0.105(6)
0.093(5)
0.107(6)
0.101(6)
Table 2: Final atomic coordination and Ueq of NH3(CH2)6NH3 HPO4.2H2O.
Figure 2: Projection along the c direction of [H2P2O8]4- clusters.
94
M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98
Atom
H(11)
H(24)
H(1N1)
H(2N1)
H(3N1)
H(1N2)
H(2N2)
H(3N2)
H(1N3)
H(2N3)
H(3N3)
H(1N4)
H(2N4)
H(3N4)
H(1C1)
H(2C1)
H(1C2)
H(2C2)
H(1C3)
H(2C3)
H(1C4)
H(2C4)
H(1C5)
H(2C5)
H(1C6)
H(2C6)
H(1C7)
H(2C7)
H(1C8)
H(2C8)
H(1C9)
H(2C9)
H(1C10)
H(2C10)
H(1C11)
H(2C11)
H(1C12)
H(2C12)
H(1W1)
H(2W1)
H(1W2)
H(2W2)
H(1W3)
H(2W3)
H(1W4)
H(2W4)
x
0.6297(17)
0.8454(25)
0.4961(17)
0.6143(17)
0.5979(17)
0.6350(18)
0.4996(18)
0.5198(18)
1.0620(16)
0.9575(16)
0.9437(16)
0.9711(17)
1.0974(17)
1.0781(15)
0.4122(25)
0.3945(25)
0.6188(22)
0.6180(22)
0.4336(25)
0.4261(25)
0.6480(23)
0.6347(23)
0.4591(26)
0.4544(26)
0.6842(25)
0.6626(25)
1.1599(22)
1.1450(22)
0.9537(24)
0.9299(24)
1.1501(26)
1.1295(26)
0.9149(22)
0.9346(22)
1.1152(25)
1.1257(25)
0.8870(25)
0.9078(25)
0.4700
0.5652
0.9758
0.8323
0.8240
0.7700
1.2546
0.6004
Table 3: Final atomic coordination of
y
0.6337(20)
0.3150(14)
-0.1452(12)
-0.0606(12)
-0.2037(12)
0.1409(17)
-2235(18)
-0.2235(18)
-0.4687(15)
- 0.3891(15)
-0.4999(15)
0.0989(20)
0.1439(16)
0.0221(16)
-0.0842(16)
-0.2388(16)
-0.0546(18)
-0.2044(18)
-0.1066(20)
-0.1338(23)
-0.2184(21)
-0.0747(21)
-0.3003(23)
-0.1544(23)
-0.2543(21)
-0.1171(21)
-0.2746(26)
-0.3941(26)
-0.2287(26)
-0.3525(26)
-0.1250(24)
-0.2496(24)
-0.2118(23)
-0.0879(23)
-0.0976(23)
-0.0278(23)
-0.0816(24)
0.0501(24)
-0.4964
0.4853
0.6969
0.6424
0.5960
0.4990
0.5863
0.4381
hydrogen
95
atoms
of
z
0.7963(19)
0.9431(12)
0.9235(18)
0.92222(8)
0.8761(18)
0.1409(17)
0.1356(11)
0.1356(17)
0.1353(17)
0.1347(18)
0.1699(18)
0.9320(26)
0.9125(20)
0.9310(20)
0.7671(26)
0.7173(26)
0.7290(23)
0.6936(23)
0.5539(27)
0.5697(23)
0.5064(25)
0.5235(25)
0.3212(25)
0.3338(25)
0.3232(25)
0.3237(25)
0.3033(24)
0.3412(24)
0.3328(25)
0.3629(25)
0.5107(24)
0.5406(24)
0.5604(23)
0.5297(23)
0.7464(24)
0.7160(24)
0.7485(26)
0.7284(26)
0.4700
0.4000
0.7809
0.7650
0.5650
0.4152
0.7600
0.1700
NH3(CH2)6NH3 HPO4.2H2O.
M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98
[HPO4 ]2- anions
P(1)
O(11)
O(12)
O(13)
O(14)
O(11)
1.563(12)
106.8(7)
109.0(7)
112.0(7)
O(12)
2.479(16)
1.525(11)
108.9(6)
109.9(6)
O(13)
2.522(16)
2.489(15)
1.534(10)
110.1(6)
O(14)
2.561(18)
2.498(13)
2.508(13)
1.526(9)
O(11)-H(11) = 0.820(2)
P(1)-O(11)-H(11) = 109.5(7)
P(2)
O(21)
O(22)
O(23)
O(24)
O(21)
1.505(11)
113.3(6)
111.5(6)
108.8(6)
O(22)
2.540(15)
1.536(9)
111.3(6)
102.7(6)
O(23)
2.521(15)
2.542(14)
1.544(9)
108.6(6)
O(24)
2.510(13)
2.539(15)
2.436(15)
1.582(9)
O(24)-H(24) = 0.820(1)
P(2)-O(24)-H(24) = 109.5(5)
P-P = 4.818(9)
1,6-diammonium hexane cations
N(1)-C(1)
1.46(2)
N(1)-C(1)-C(2)
110.5(21)
C(1)-C(2)
1.53(2)
C(3)-C(2)-C(1)
120.0(21)
C(2)-C(3)
1.44(2)
C(2)-C(3)-C(4)
119.7(24)
C(3)-C(4)
1.46(2)
C(3)-C(4)-C(5)
121.4(25)
C(4)-C(5)
1.47(2)
C(6)-C(5)-C(4)
117.3(23)
C(5)-C(6)
1.42(2)
C(5)-C(6)-N(2)
120.8(21)
C(6)-N(2)
1.43(2)
N(3)-C(7)-C(8)
112.8(18)
N(3)-C(7)
1.47(2)
C(9)-C(8)-C(7)
116.4(20)
C(7)-C(8)
1.52(2)
C(8)-C(9)-C(10)
114.8(20)
C(8)-C(9)
1.47(2)
C(9)-C(10)-C(11)
117.0(20)
C(9)-C(10) 1.52(2)
C(12)-C(11)-C(10)
112.3(21)
C(10)-C(11) 1.52(2)
C(11)-C(12)-N(4)
110.5(20)
C(11)-C(12) 1.49(2)
C(12)-N(4) 1.49(2)
N(1)-C(1)-C(2)-C(3)
172.9(15)
N (3)-C(7)-C(8)-C(9)
176.3(18)
C(1)-C(2)-C(3)-C(4)
-177.5(16)
C(7)-C(8)-C(9)-C(10)
-178.7(20)
C(2)-C(3)-C(4)-C(5)
171.3(18)
C(8)-C(9)-C(10)-C(11) -179.6(18)
C(3)-C(4)-C(5)-C(6)
-176.8(19)
C(9)-C(10)-C(11)-C(12) -176.4(18)
C(4)-C(5)-C(6)-N(2)
172.4(19)
C(10)-C(11)-C(12)-N(4) 175.3(16)
water molecules
O(W1)-H(1W1)
0.90(2)
O(W3)-H(1W3)a
1.00(2)
a
O(W1)-H(2W1)
0.92(2)
O(W3)-H(2W3)d
0.95(2)
O(W2)-H(1W2)b
0.90(1)
O(W4)-H(1W4)b
0.88(1)
O(W2)-H(2W2)b
0.85(1)
O(W4)-H(2W4)c
0.99(1)
H(1W1)-O(W1)-H(2W1)a 110.2(16) H(1W3)a-O(W3)-H(2W3)a 117.9(18)
H(1W2)b-O(W2)-H(2W2)b 110.9(12) H(1W4)a-O(W4)-H(2W4)c 113.3(12)
Symmetry codes: (a) x, y-1, z ; (b) -x+2, -y+1, -z+2 ; (c) x, y, z+1
Table 4: Principal interatomic distances (Å) and angles(°) in NH3(CH2)6NH3 HPO4.2H2O.
3.2 Thermal behavior
attributed to the elimination of ammonia
molecules (weight loss, calculated 13.6 %,
experimental 14.6 %). After 517K, we observe
the beginning of the melting point of the
compound leading to a glass product. The DTA
curve exibits two endotherms at 368K and 509K
in accordance with the elimination of the water
and ammonia molecules.
Fig. 4 shows both TG and DTA thermograms
of DAH-HP. The weight loss occurs in two
stages. The first process startes at 338K and is
complete at 384K. It corresponds to the loss of
two water molecules (weight loss, calculated 7.2
%, experimental 7.7 %) leading to a white
powder. The second stage, from 477K to 517K, is
96
M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98
Figure 3: Projection along the a direction of the DAH-HP arrangement showing the [NH3(CH2)6NH3]2+ dications
linked by N-H...O hydrogen bonds to [H2P2O8]4- clusters. Water molecules and hydrogen atoms of organic chains are
not represented. With increasing radius, circles represent respectively hydrogen, carbon, nitrogen, oxygen and
phosphor atoms.
(N,O)-H
H...O
(N,O)...O
N(1)-H(1A)...O(23)a
0.89
1.84(2)
2.73(3)
N(1)-H(1B)...O(22)
0.89
2.24(2)
3.07(2)
N(1)-H(1C)...O(11)j
0.89
1.98(2)
2.87(2)
N(2)-H(2A)...O(14)c
0.89
2.01(2)
2.86(2)
N(2)-H(2B)...O(23)d
0.89
1.89(2)
2.73(2)
N(2)-H(2C)...O(12)d
0.89
1.90(2)
2.73(2)
N(3)-H(3A)...O(13)e
0.89
1.81(2)
2.68(2)
N(3)-H(3B)...O(14)c
0.89
2.14(2)
2.98(2)
N(3)-H(3C)...O(21)c
0.89
2.04(2)
2.89(2)
N(4)-H(4A)...O(22)
0.89
1.91(2)
2.75(2)
N(4)-H(4B)...O(14)b
0.89
1.93(2)
2.75(2)
N(4)-H(4C)...O(22)f
0.89
1.84(2)
2.73(2)
O(24)-H(24)...O(13)
0.820(1)
2.11(24)
2.64(1)
O(11)-H(11)...O(W1)d
0.820(2)
2.16(23)
2.82(2)
O(W1)-H(1W1)...O(W1)f
0.90(2)
1.56(2)
2.40(4)
O(W1)-H(2W1)j...O(W3)
0.92(2)
1.99(3)
2.83(3)
O(W2)-H(1W2)b...O(21)
0.90(1)
1.91(1)
2.78(2)
O(W2)-H(2W2)b...O(11)b
0.85(1)
1.85(1)
2.63(2)
O(W3)-H(1W3)j...O(W2)f
1.00(2)
1.85(1)
2.70(3)
O(W3)-H(2W3)j...O(W4)c
0.95(2)
1.87(1)
2.75(2)
O(W4)-H(1W4)b...O(21)
0.88(1)
1.96(1)
2.76(2)
O(W4)-H(2W4)k...O(12)h
0.99(2)
1.76(4)
2.68(2)
Symmetry codes: (a) -x+1,-y,-z+2 ; (b) -x+2, -y+1, -z+2 ; (c) x, y-1, z-1 ;
(d) -x+1, -y, -z+1 ; (e) -x+2, -y, -z+1 ; (f) -x+2, -y, -z+2 ; (g) -x+1, -y-1, -z+1 ;
(h) -x+1, -y+1, -z+2 ; (i) -x+1, -y+1, -z+1 ; (j) x, y-1, z ; (k) x, y, z+1
(N,O)-H...O
173.4(5)
155.6(4)
172.8(8)
160.9(6)
155.2(6)
175.1(2)
162.0(6)
157.4(5)
161.4(6)
155.8(6)
171.7(6)
178.6(6)
122.7(23)
137.2(31)
154.7(6)
151.2(12)
160.9(7)
151.3(8)
140.3(11)
154.0(16)
148.7(9)
151.4(7)
Table 5: Bond lengths (Å) and bond angles (°) in the hydrogen-bonding scheme of NH3(CH2)6NH3 HPO4.2H2O.
97
M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98
Figure 4: TG-DTA analysis of DAH-HP.
4. Conclusion
[4] M. T. Averbuch Pouchot, A. Durif, Acta
Cryst., C43 (1987) 1894.
[5] M. T. Averbuch Pouchot, A. Durif, J. C.
Guitel, Acta Cryst., C43 (1987) 1896.
[6] S. Chaabouni, S. Kammoun, J. of Alloys and
Compounds, 224, N. 2 (1995) 227.
[7] S. Kammoun, A. Jouini and A. Daoud, Acta
Cryst., C46 (1990) 1481.
[8] L. Baouab, A. Jouini, J. Solid State Chem., 141
(1998) 343.
[9] Z. Elaoud, S. Kammoun, T. Mhiri, J. Jaud,
J. of Chem. Crystallgr., 29, N. 5 (1999) 541.
[10] G. M. Sheldrick, SHELXS86: Program. for
the Solution of Crystal Structure, University of
Göttingen, Germany (1990).
[11] G. M. Sheldrick, SHELXL93: Program for
the Refinement of Crystal Structure, University of
Göttingen, Germany (1993).
[12] E. Bartozak, M. Jaskolski, Acta Cryst., C46
(1990) 2158.
[13] Th. Loiseau, G. Férey, J. of Solid State
Chem. 111 (1994) 403.
[14] S. Kashino, T. Iwamoto, S. Hirata,
J. Muzoguchi, Acta. Cryst., C45 (1994) 1741.
[15] R. H. Blessing, Acta Cryst., B47 (1986) 613.
[16] I. D. Brown, Acta Cryst., A32 (1976) 24.
The synthesis and structural characterization of
a novel layered organic-monophpsphate consisting
of alternating inorganic-organic layers have been
accomplished. The present crystal represents
another example illustrating the importance of
multipoint hydrogen bonding in the synthesis and
stability of open - frame work materials. The
DAH-HP structure exhibits infinite anionic layers
organization using O-H...O hydrogen bonds. This
anionic layers are themselves interconnected with
the organic cations through N-H...O hydrogen
bonds originating from N-H donors.
Acknowledgments
The authors express their most grateful thanks
to Prof. Mohamed Rzaigui for the X-ray data
collection, to Dr. Sabeur Kammoun and to
Dr. Mohamed Dammak for helpful and fruitful
discussions.
References
[1] S. Kammoun, A. Jouini, M. Kammoun,
A. Daoud, Acta Cryst., C45 (1989) 481.
[2] S. Kammoun, A. Jouini, A. Daoud, A. Durif,
J. C. Guitel, Acta Cryst., C48 (1992) 133.
[3] S. Kammoun, A. Jouini, A. Daoud, Acta
Cryst., C47(1991) 117.
98