March 2002 Phys. Chem. News 5 (2002) 91-98 PCN STRUCTURAL AND THERMAL STUDIES OF A NEW ORGANIC MONOPHOSPHATE NH3(CH2)6NH3 HPO4.2H2O M. Belhouchet, M. Gargouri, T. Mhiri*, A. Daoud Laboratoire de l’Etat Solide, Faculté des sciences de Sfax, Université de Sfax, 3018 Sfax, Tunisia * Corresponding Author. E-mail: [email protected] Dedicated to Dr: H. Mhiri Received : 04 October 2001; revised version accepted 29 January 2002 Abstract A new tridimensional organic monophosphate, NH3(CH2)6NH3 HPO4.2H2O was synthesized by slow evaporation at room temperature of the system NH2(CH2)6NH2 - H3PO4 - H2O. It crystallizes in the triclinic space group P 1 with lattice parameters a = 10.187(2)Å, b = 11.084(3)Å, c = 12.627(2)Å, α = 110.70(2)°, β = 108.31(2)°, γ = 96.14(2)°, V = 1227.4(5)Å3, Z = 4, R1 = 0.0372 and wR2 = 0.0866 for 701 observed reflexions. The crystal structure is characterized by the existence of [H2P2O8]4- clusters, resulting from the association of two [HPO4 ]2- tetrahedra related by one O-H...O hydrogen bond, linked with two water molecules forming an infinite zigzag centrosymetric chains, related themselves with two water molecules, building three dimensional anionic layers parallel to the (010) plane. Organic dications, encapsulated between two anionic layers, are linked to [HPO4 ]2- groups using N-H...O hydrogen bonds. Keywords : Crystal structure; Organic phosphate; TG-DTA. Schematically the reaction is: 1. Introduction Since 1987, new series of very stable organic phosphates salts were synthesized and characterized during the interaction of aliphatic diamine [NH2(CH2)nNH2] with various acidic monophosphates [1-9]. The crystal structure of these compounds show alternate planes or chains of [HPO4]n2n-, [H2PO4]nn-, [HPO4.xH2O]n2nand [H2PO4.xH2O]nn-, with organic moities. The present work continues a series of investigations into the factors influencing the dimensions of phosphoric anion-organic cation interactions. In order to study the influence of the length of the diamine on the structure of the corresponding compounds, we carried out experiments with diamines NH2(CH2)nNH2 (n ≥ 5). We report here the preparation and characterization of a new organic phosphate synthesized in the system 1, 6 hexane diamine - H3PO4 - H2O as a single crystal. The compound formula C6H18N2 HPO4.2H2O, named monohydrogenomonophosphate hexane 1, 6 diammonium dihydrate, here after denoted DAH-HP. C6H16N2 + H3PO4 H2O C6H18N2 HPO4.2H2O After several days, the solution leads to transparent prallelipipedic colourless single crystals of DAH-HP. Their chemical preparation is reproductible and the crystals obtained in this way are pure and stable under normal conditions of temperature and humidity. 2.2 X-ray diffraction A single crystal of DAH-HP was carefully selected under a polarising microscope. Intensity data collection was performed with an Enraf Nonius CAD4 diffractometer. The average density value, measured at room temperature with the toluene as the pycnometric liquid, is in agreement with the calculated density, the unit formula in the cell is deduced from this value. The chemical crystal data, conditions of X-ray diffraction data collection, the strategy used for the crystal structure determination and their results are listed in Table 1. 2. Experimental 2.3 Thermal behavior 2.1 Chemical preparation SetaramTG-DTA and NETZSCH-DSC (204) thermoanalysers were used to perform thermal treatment of DAH-HP. The TG-DTA experiment was carried out with 14.36 mg sample in an open alumina crucible. The sample was heated from room temperature to 523K at 5K/mn in air. The title compound was synthesized by slow evaporation at room temperature of an aqueous solution of phosphoric acid (H3PO4) and the corresponding organic molecule (NH2(CH2)6NH2, Aldrich 99%) in the stoichiometric ratio. 91 M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98 Crystal data Formula: NH3(CH2)6NH3 HPO4.2H2O Crystal system: Triclinic a =10.187(2)Å; b = 11.084(3)Å; c = 12.627(2)Å α = 110.70(2)°. β = 108.31(2)°. γ = 96.14(2)° ρcal/ρmeas = 1.354/1.33 g.cm-3 Linear absorption factor Morphology Intensity measurement Temperature 293(2) K Diffractometer: Enraf Nonius CAD4 Monochromator: graphite plate θ range: 3.18 - 14.67° Measurement area: -7≤ h≤ 6 ; -7 ≤ k ≤ 7; 0 ≤ l ≤ 8 Number of scanned reflexions: 941 Number of unique reflexions: 872 (Rint = 0.0135) Structure determination Structure determination: SHELXS86 [10] Structure refinement SHELXL93 [11] Number of observed reflexions (I >2σ): 701 wR2 / R1: 0.0866/ 0.0372 w = 1/[σ2(Fo)2 + (0.0895 P)2 + 0.00 P] ; P = Fo2 + 2Fc2/3 Final Fourier residual: min (-0.125eÅ-3 ), max (0.133eÅ-3 ) Fw = 250.23 Space group: P 1 V = 1227.4(5)Å3 Z=4 F(000) = 544 µ(MoKα) = 0.237 mm-1 Parallelipipedic Wavelength:MoKα = 0.71069 Å scan mode:ω/2θ Table 1: Summary of crystal data, intensity measurements, and final results for NH3(CH2)6NH3 HPO4.2H2O. 3. Results and discussion presence of the acidic hydrogen atoms. P-O distances and O-P-O angles are similar than those observed in organic phosphates containing the same anionic moities [3-9, 12]. The short P-P distance observed in [H2P2O8]4- dimers is 4.818(9)Å, similar than those observed in C2H10N2 HPO4[4], β-NH3(CH2)2NH3 HPO4 [6] and C3H12N2 HPO4.H2O [3]. The organic groups, present as the dication [NH3(CH2)6NH3]2+, are located between layers of anionic moities. These cations as shown in Fig. 3, giving the atomic arrangement, are anchorded on the anionic chains through N-H...O hydrogen contacts. The detailed geometry of [NH3(CH2)6NH3]2+ dications (Table 4) shows that the unit cell contain two different types of organic chains: [N(1)-C(i)-N(2) / i=1...6] and [N(3)-C(i)-N(4) / i=7...12] linking between [HPO4]2- tetrahedra by N-H...O hydrogen bonds forming a three dimensionnal network. The 1, 6-hexane diammonium dications are presented in the fully extented all trans conformation as observed in NH3(CH2)4NH3 H2P2O7 [12], NH3(CH2)3NH3 2H2PO4 [2] and NH3(CH2)3NH3 HPO4.H2O [3]. The torsion angles are in Table 4. C-C distances, C-C-C and N-C-C angles in the organic dications are similar than those observed in compounds containing the same organic molecules [13-14]. Bond lengths and 3. 1 DAH-HP structure description The final atomic coordinates and the U equivalent temperature factors are given in Tables 2 and 3. The structure can be described as being built up by a linkage between planes of [HPO4]2anions, water molecules and the organic dications [NH3(CH2)6 NH3]2+. Fig. 1 displays a projection in the (a,c) plane of the anionic structure. The [HPO4]2- tetrahedra are connected together in pairs through one O-H...O hydrogen bond: O(24)-H(24)...O(13) forming [H2P2O8]4- clusters (Fig. 2) located at (100) and (200) planes. Each cluster from the (200) plane is linked with two clusters from the (100) plane using two water molecules [O(W2) and O(W4)] forming an infinite zigzag centrosymmetric chains parallel to the a axis. These chains are connected themselves with ten symmetric hydrogen bonds using O(W3) and O(W1) water molecules forming a three dimensional layers parallel to the (010) plane (Fig. 1). The detailed geometry of [HPO4]2- tetrahedra (Table 4) shows that the P-O bonds, with upper and lower limits [1.505(11), 1.544(9) Å], are significantly shorter than the P-OH bonds [1.563(12), 1.582(9) Å] wich is due to the 92 M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98 N(O)...O distance [15-16 ]: dN(O)...O > 2.73Å weak and dN(O)...O < 2.73Å strong. The DAH-HP stucture is built by twenty two hydrogen bonds, five are considered strong and the others are weak bonds. This structure includes ten potentiel hydrogen bond donors (four N-H and six O-H) and eleven oxygen acceptors. angles in the hydrogen bonding scheme of DAH-HP are listed in Table 5 with upper limits respectively of 2.24(2)Å, 178.6(6)° for the H...A distances H...A distances, D-H...A bond angles (D: donnor ; A : acceptor) and lower limits of 1.56(2)Å, 137.2(31)°. The hydrogen bonding strength can be interpreted according to the Figure 1: Projection along the b direction of the anionic layers showing all the O-H..O bonds. In this figure and figure 2 large circles represent phosphor atoms, medium circles (oxygen atoms) and small circles ( hydrogen atoms). 93 M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98 Atom x P(1) 0.7140(7) P(2) 0.7633(6) O(11) 0.7104(17) O(12) 0.5594(12) O(13) 0.7917(11) O(14) 0.7866(8) O(21) 0.8375(11) O(22) 0.8288(10) O(23) 0.6013(11) O(24) 0.7882(8) O(W1) 0.4744(16) O(W2) 1.1176(13) O(W3) 0.7710(28) O(W4) 0.6797(15) N(1) 0.5516(17) N(2) 0.5621(18) N(3) 1.0051(16) N(4) 1.0337(17) C(1) 0.4637(25) C(2) 0.5570(22) C(3) 0.4912(25) C(4) 0.5801(23) C(5) 0.5175(26) C(6) 0.6132(24) C(7) 1.0917(22) C(8) 1.0024(24) C(9) 1.0792(26) C(10) 0.9855(22) C(11) 1.0600(25) C(12) 0.9574(26) Ueq = 1/3 ∑i ∑jUij ai*aj* ai aj y 0.5960(6) 0.2000(6) 0.6608(12) 0.5361(9) 0.4841(10) 0.6975(9) 0.3150(11) 0.0796(10) 0.1598(8) 0.2422(8) -0.5112(16) 0.3268(10) -0.4919(16) 0.4580(10) -0.1394(12) -0.2656(18) 0.1409(17) 0.0729(16) -0.1535(16) -0.1437(18) -0.1700(20) -0.1660(21) -0.2103(24) -0.2092(20) -0.3445(26) -0.2818(25) -0.1974(24) -0.1388(23) -0.0495(23) -0.0048(24) z 0.9411(6) 1.0107(6) 0.8489(15) 0.9150(8) 0.9172(9) 1.0737(9) 1.1337(11) 0.9977(8) 0.9787(8) 0.9098(9) 0.3968(17) 1.2668(11) 0.4933(20) 1.2488(12) 0.8825(18) 0.1409(17) 0.099(5) 0.8984(20) 0.7603(27) 0.6875(23) 0.5597(27) 0.4897(24) 0.3562(25) 0.2951(25) 0.3011(25) 0.3712(25) 0.5019(23) 0.5697(23) 0.7056(24) 0.7639(23) Ueq (Å2 ) 0.096(2) 0.089(2) 0.131(4) 0.108(4) 0.107(4) 0.085(3) 0.110(4) 0.103(4) 0.098(4) 0.089(3) 0.112(8) 0.092(8) 0.108(11) 0.100(4) 0.095(5) 0.099(5) 0.099(5) 0.096(5) 0.098(6) 0.088(6) 0.100(6) 0.083(5) 0.097(6) 0.102(6) 0.101(6) 0.112(6) 0.105(6) 0.093(5) 0.107(6) 0.101(6) Table 2: Final atomic coordination and Ueq of NH3(CH2)6NH3 HPO4.2H2O. Figure 2: Projection along the c direction of [H2P2O8]4- clusters. 94 M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98 Atom H(11) H(24) H(1N1) H(2N1) H(3N1) H(1N2) H(2N2) H(3N2) H(1N3) H(2N3) H(3N3) H(1N4) H(2N4) H(3N4) H(1C1) H(2C1) H(1C2) H(2C2) H(1C3) H(2C3) H(1C4) H(2C4) H(1C5) H(2C5) H(1C6) H(2C6) H(1C7) H(2C7) H(1C8) H(2C8) H(1C9) H(2C9) H(1C10) H(2C10) H(1C11) H(2C11) H(1C12) H(2C12) H(1W1) H(2W1) H(1W2) H(2W2) H(1W3) H(2W3) H(1W4) H(2W4) x 0.6297(17) 0.8454(25) 0.4961(17) 0.6143(17) 0.5979(17) 0.6350(18) 0.4996(18) 0.5198(18) 1.0620(16) 0.9575(16) 0.9437(16) 0.9711(17) 1.0974(17) 1.0781(15) 0.4122(25) 0.3945(25) 0.6188(22) 0.6180(22) 0.4336(25) 0.4261(25) 0.6480(23) 0.6347(23) 0.4591(26) 0.4544(26) 0.6842(25) 0.6626(25) 1.1599(22) 1.1450(22) 0.9537(24) 0.9299(24) 1.1501(26) 1.1295(26) 0.9149(22) 0.9346(22) 1.1152(25) 1.1257(25) 0.8870(25) 0.9078(25) 0.4700 0.5652 0.9758 0.8323 0.8240 0.7700 1.2546 0.6004 Table 3: Final atomic coordination of y 0.6337(20) 0.3150(14) -0.1452(12) -0.0606(12) -0.2037(12) 0.1409(17) -2235(18) -0.2235(18) -0.4687(15) - 0.3891(15) -0.4999(15) 0.0989(20) 0.1439(16) 0.0221(16) -0.0842(16) -0.2388(16) -0.0546(18) -0.2044(18) -0.1066(20) -0.1338(23) -0.2184(21) -0.0747(21) -0.3003(23) -0.1544(23) -0.2543(21) -0.1171(21) -0.2746(26) -0.3941(26) -0.2287(26) -0.3525(26) -0.1250(24) -0.2496(24) -0.2118(23) -0.0879(23) -0.0976(23) -0.0278(23) -0.0816(24) 0.0501(24) -0.4964 0.4853 0.6969 0.6424 0.5960 0.4990 0.5863 0.4381 hydrogen 95 atoms of z 0.7963(19) 0.9431(12) 0.9235(18) 0.92222(8) 0.8761(18) 0.1409(17) 0.1356(11) 0.1356(17) 0.1353(17) 0.1347(18) 0.1699(18) 0.9320(26) 0.9125(20) 0.9310(20) 0.7671(26) 0.7173(26) 0.7290(23) 0.6936(23) 0.5539(27) 0.5697(23) 0.5064(25) 0.5235(25) 0.3212(25) 0.3338(25) 0.3232(25) 0.3237(25) 0.3033(24) 0.3412(24) 0.3328(25) 0.3629(25) 0.5107(24) 0.5406(24) 0.5604(23) 0.5297(23) 0.7464(24) 0.7160(24) 0.7485(26) 0.7284(26) 0.4700 0.4000 0.7809 0.7650 0.5650 0.4152 0.7600 0.1700 NH3(CH2)6NH3 HPO4.2H2O. M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98 [HPO4 ]2- anions P(1) O(11) O(12) O(13) O(14) O(11) 1.563(12) 106.8(7) 109.0(7) 112.0(7) O(12) 2.479(16) 1.525(11) 108.9(6) 109.9(6) O(13) 2.522(16) 2.489(15) 1.534(10) 110.1(6) O(14) 2.561(18) 2.498(13) 2.508(13) 1.526(9) O(11)-H(11) = 0.820(2) P(1)-O(11)-H(11) = 109.5(7) P(2) O(21) O(22) O(23) O(24) O(21) 1.505(11) 113.3(6) 111.5(6) 108.8(6) O(22) 2.540(15) 1.536(9) 111.3(6) 102.7(6) O(23) 2.521(15) 2.542(14) 1.544(9) 108.6(6) O(24) 2.510(13) 2.539(15) 2.436(15) 1.582(9) O(24)-H(24) = 0.820(1) P(2)-O(24)-H(24) = 109.5(5) P-P = 4.818(9) 1,6-diammonium hexane cations N(1)-C(1) 1.46(2) N(1)-C(1)-C(2) 110.5(21) C(1)-C(2) 1.53(2) C(3)-C(2)-C(1) 120.0(21) C(2)-C(3) 1.44(2) C(2)-C(3)-C(4) 119.7(24) C(3)-C(4) 1.46(2) C(3)-C(4)-C(5) 121.4(25) C(4)-C(5) 1.47(2) C(6)-C(5)-C(4) 117.3(23) C(5)-C(6) 1.42(2) C(5)-C(6)-N(2) 120.8(21) C(6)-N(2) 1.43(2) N(3)-C(7)-C(8) 112.8(18) N(3)-C(7) 1.47(2) C(9)-C(8)-C(7) 116.4(20) C(7)-C(8) 1.52(2) C(8)-C(9)-C(10) 114.8(20) C(8)-C(9) 1.47(2) C(9)-C(10)-C(11) 117.0(20) C(9)-C(10) 1.52(2) C(12)-C(11)-C(10) 112.3(21) C(10)-C(11) 1.52(2) C(11)-C(12)-N(4) 110.5(20) C(11)-C(12) 1.49(2) C(12)-N(4) 1.49(2) N(1)-C(1)-C(2)-C(3) 172.9(15) N (3)-C(7)-C(8)-C(9) 176.3(18) C(1)-C(2)-C(3)-C(4) -177.5(16) C(7)-C(8)-C(9)-C(10) -178.7(20) C(2)-C(3)-C(4)-C(5) 171.3(18) C(8)-C(9)-C(10)-C(11) -179.6(18) C(3)-C(4)-C(5)-C(6) -176.8(19) C(9)-C(10)-C(11)-C(12) -176.4(18) C(4)-C(5)-C(6)-N(2) 172.4(19) C(10)-C(11)-C(12)-N(4) 175.3(16) water molecules O(W1)-H(1W1) 0.90(2) O(W3)-H(1W3)a 1.00(2) a O(W1)-H(2W1) 0.92(2) O(W3)-H(2W3)d 0.95(2) O(W2)-H(1W2)b 0.90(1) O(W4)-H(1W4)b 0.88(1) O(W2)-H(2W2)b 0.85(1) O(W4)-H(2W4)c 0.99(1) H(1W1)-O(W1)-H(2W1)a 110.2(16) H(1W3)a-O(W3)-H(2W3)a 117.9(18) H(1W2)b-O(W2)-H(2W2)b 110.9(12) H(1W4)a-O(W4)-H(2W4)c 113.3(12) Symmetry codes: (a) x, y-1, z ; (b) -x+2, -y+1, -z+2 ; (c) x, y, z+1 Table 4: Principal interatomic distances (Å) and angles(°) in NH3(CH2)6NH3 HPO4.2H2O. 3.2 Thermal behavior attributed to the elimination of ammonia molecules (weight loss, calculated 13.6 %, experimental 14.6 %). After 517K, we observe the beginning of the melting point of the compound leading to a glass product. The DTA curve exibits two endotherms at 368K and 509K in accordance with the elimination of the water and ammonia molecules. Fig. 4 shows both TG and DTA thermograms of DAH-HP. The weight loss occurs in two stages. The first process startes at 338K and is complete at 384K. It corresponds to the loss of two water molecules (weight loss, calculated 7.2 %, experimental 7.7 %) leading to a white powder. The second stage, from 477K to 517K, is 96 M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98 Figure 3: Projection along the a direction of the DAH-HP arrangement showing the [NH3(CH2)6NH3]2+ dications linked by N-H...O hydrogen bonds to [H2P2O8]4- clusters. Water molecules and hydrogen atoms of organic chains are not represented. With increasing radius, circles represent respectively hydrogen, carbon, nitrogen, oxygen and phosphor atoms. (N,O)-H H...O (N,O)...O N(1)-H(1A)...O(23)a 0.89 1.84(2) 2.73(3) N(1)-H(1B)...O(22) 0.89 2.24(2) 3.07(2) N(1)-H(1C)...O(11)j 0.89 1.98(2) 2.87(2) N(2)-H(2A)...O(14)c 0.89 2.01(2) 2.86(2) N(2)-H(2B)...O(23)d 0.89 1.89(2) 2.73(2) N(2)-H(2C)...O(12)d 0.89 1.90(2) 2.73(2) N(3)-H(3A)...O(13)e 0.89 1.81(2) 2.68(2) N(3)-H(3B)...O(14)c 0.89 2.14(2) 2.98(2) N(3)-H(3C)...O(21)c 0.89 2.04(2) 2.89(2) N(4)-H(4A)...O(22) 0.89 1.91(2) 2.75(2) N(4)-H(4B)...O(14)b 0.89 1.93(2) 2.75(2) N(4)-H(4C)...O(22)f 0.89 1.84(2) 2.73(2) O(24)-H(24)...O(13) 0.820(1) 2.11(24) 2.64(1) O(11)-H(11)...O(W1)d 0.820(2) 2.16(23) 2.82(2) O(W1)-H(1W1)...O(W1)f 0.90(2) 1.56(2) 2.40(4) O(W1)-H(2W1)j...O(W3) 0.92(2) 1.99(3) 2.83(3) O(W2)-H(1W2)b...O(21) 0.90(1) 1.91(1) 2.78(2) O(W2)-H(2W2)b...O(11)b 0.85(1) 1.85(1) 2.63(2) O(W3)-H(1W3)j...O(W2)f 1.00(2) 1.85(1) 2.70(3) O(W3)-H(2W3)j...O(W4)c 0.95(2) 1.87(1) 2.75(2) O(W4)-H(1W4)b...O(21) 0.88(1) 1.96(1) 2.76(2) O(W4)-H(2W4)k...O(12)h 0.99(2) 1.76(4) 2.68(2) Symmetry codes: (a) -x+1,-y,-z+2 ; (b) -x+2, -y+1, -z+2 ; (c) x, y-1, z-1 ; (d) -x+1, -y, -z+1 ; (e) -x+2, -y, -z+1 ; (f) -x+2, -y, -z+2 ; (g) -x+1, -y-1, -z+1 ; (h) -x+1, -y+1, -z+2 ; (i) -x+1, -y+1, -z+1 ; (j) x, y-1, z ; (k) x, y, z+1 (N,O)-H...O 173.4(5) 155.6(4) 172.8(8) 160.9(6) 155.2(6) 175.1(2) 162.0(6) 157.4(5) 161.4(6) 155.8(6) 171.7(6) 178.6(6) 122.7(23) 137.2(31) 154.7(6) 151.2(12) 160.9(7) 151.3(8) 140.3(11) 154.0(16) 148.7(9) 151.4(7) Table 5: Bond lengths (Å) and bond angles (°) in the hydrogen-bonding scheme of NH3(CH2)6NH3 HPO4.2H2O. 97 M. Belhouchet et al, Phys. Chem. News 5 (2002) 91-98 Figure 4: TG-DTA analysis of DAH-HP. 4. Conclusion [4] M. T. Averbuch Pouchot, A. Durif, Acta Cryst., C43 (1987) 1894. [5] M. T. Averbuch Pouchot, A. Durif, J. C. Guitel, Acta Cryst., C43 (1987) 1896. [6] S. Chaabouni, S. Kammoun, J. of Alloys and Compounds, 224, N. 2 (1995) 227. [7] S. Kammoun, A. Jouini and A. Daoud, Acta Cryst., C46 (1990) 1481. [8] L. Baouab, A. Jouini, J. Solid State Chem., 141 (1998) 343. [9] Z. Elaoud, S. Kammoun, T. Mhiri, J. Jaud, J. of Chem. Crystallgr., 29, N. 5 (1999) 541. [10] G. M. Sheldrick, SHELXS86: Program. for the Solution of Crystal Structure, University of Göttingen, Germany (1990). [11] G. M. Sheldrick, SHELXL93: Program for the Refinement of Crystal Structure, University of Göttingen, Germany (1993). [12] E. Bartozak, M. Jaskolski, Acta Cryst., C46 (1990) 2158. [13] Th. Loiseau, G. Férey, J. of Solid State Chem. 111 (1994) 403. [14] S. Kashino, T. Iwamoto, S. Hirata, J. Muzoguchi, Acta. Cryst., C45 (1994) 1741. [15] R. H. Blessing, Acta Cryst., B47 (1986) 613. [16] I. D. Brown, Acta Cryst., A32 (1976) 24. The synthesis and structural characterization of a novel layered organic-monophpsphate consisting of alternating inorganic-organic layers have been accomplished. The present crystal represents another example illustrating the importance of multipoint hydrogen bonding in the synthesis and stability of open - frame work materials. The DAH-HP structure exhibits infinite anionic layers organization using O-H...O hydrogen bonds. This anionic layers are themselves interconnected with the organic cations through N-H...O hydrogen bonds originating from N-H donors. Acknowledgments The authors express their most grateful thanks to Prof. Mohamed Rzaigui for the X-ray data collection, to Dr. Sabeur Kammoun and to Dr. Mohamed Dammak for helpful and fruitful discussions. References [1] S. Kammoun, A. Jouini, M. Kammoun, A. Daoud, Acta Cryst., C45 (1989) 481. [2] S. Kammoun, A. Jouini, A. Daoud, A. Durif, J. C. Guitel, Acta Cryst., C48 (1992) 133. [3] S. Kammoun, A. Jouini, A. Daoud, Acta Cryst., C47(1991) 117. 98
© Copyright 2026 Paperzz