3D friction map Friction in Elasto Hydrodynamically Lubricated contacts The influence of speed and slide to roll ratio • Marcus Björling – Prof. Roland Larsson (supervisor) – Dr. Pär Marklund (co-supervisor) • Industrial Partners – Vicura AB – Scania – Volvo Construction Equipment 1 2 Elasto Hydrodynamic Lubrication (EHL) 3 Elasto Hydrodynamic Lubrication (EHL) 4 Project aims Conformal and non conformal contacts • Improve the understanding of friction in EHL • Find a good way to map out system performance Lubricant • Improve efficiency of machine components working in EHL 5 6 Large contact area Small contact area Low contact pressure High contact pressure Typical contact pressure in rolling element bearings, 1-4 GPa! Viscosity increase several orders of magnitude 30-120 cars on one coin Mineral oil Ester oil water coin 7 8 Example of EHL contact Example of EHL contact Viscosity Entrainment speed Dry contact Pressure-viscosity behaviour Hertz pressure … w Film pressure Not to scale! w´ w u2 inlet u2 outlet u1 9 10 outlet h(x) hmin inlet hc hc u1 EHL shear profile u1=u2 11 EHL shear profile u2 u2 u1 u1 u1<u2 No sliding 12 sliding Limiting shear stress Friction versus Slide to Roll Ratio (μ-slip) μ Shear stress Non-Linear Limiting shear stress Thermal Linear Shear strain rate 13 SRR 14 Lubrication regimes Stribeck curve μ Full film lubrication Mixed lubrication Hydrodynamic EHL Boundary lubrication Boundary Full film Mixed Film thickness 15 16 EHL - Summary • • • • EHL = Elasto Hydrodynamic Lubrication Non-conformal surfaces → small contact region High contact pressures, 1-4 GPa Solidification of lubricant Application example Entrainment velocity Effective radius Gear tooth load • The surfaces are deformed • Thin lubricant films <1μm (10-1000 nm) addendum dedendum • Examples: ball bearing, gears, cam followers Pitch point Slide to roll ratio (SRR) 17 18 Action line coordinate Experimental setup Wedeven Associates Machine (WAM) no. 11 Entrainment speed Ue = u1 + u2 2 0.34-9.6 m/s w´ u2 outlet u1 19 20 hmin h(x) hc inlet Experimental setup Experimental setup Slide to roll ratio (SRR) Load u1 + u2 Ue 0.0002-0.49 w=200 N w´ w´ w u2 u2 outlet inlet hc u1 21 outlet h(x) hmin h(x) hc inlet Dry contact Maximum Hertzian pressure 1.7 GPa Mean Hertzian pressure 1.13 GPa u1 22 hmin SRR = 3D friction map 23 µ-slip curve 24 Stribeck curve 25 3D friction map 26 2D contour map Schematic 2D map of EHL friction regimes T SRR M NL L Entrainment speed 27 28 3D map – EHL friction regimes Test parameters Mixed • Temperatures – 40 and 90°C • Viscosities – low and high Thermal • Base oil type – mineral and ester • EP additive content – 0 and 2 % • Surface roughness – rough and smooth Linear Non-Linear • Coating – uncoated and DLC coated 29 30 Contact friction, low viscosity oil 31 Contact friction, high viscosity oil 32 Low viscosity vs high viscosity mineral oil Low viscosity 33 Difference in friction coefficient, low – high viscosity High viscosity 34 Difference in friction coefficient, low – high viscosity % 35 Difference in friction coefficient, 40° – 90° % 36 Difference in friction coefficient, mineral – ester % 37 Difference in friction coefficient, rough – smooth % 38 – 39 – 40 % – 1D Simulation model % Principle Lubricant 41 42 1D Simulation model Effect of DLC coating on oil film temperature increase Schematics Steel Coating/Steel Steel Lubricant 43 44 Application example Influence of several parameters on coefficient of friction Entrainment velocity Effective radius Gear tooth load addendum dedendum 1. Different results depending on surface roughness, temperature etc 2. Given comparable viscosities Pitch point Slide to roll ratio (SRR) Licentiate thesis: www.ltu.se/lib search ”Marcus Björling” 45 46 Action line coordinate Where to operate? 47 Friction power MW/m² 48 In conclusion Future work • Correlate WAM tests with tests with actual gears 49 50 Power re-circulating test rig Future work • Correlate WAM tests with tests with actual gears • Model the circular contact 51 52 Model vs experiment Future work • Correlate WAM tests with tests with actual gears • Model the circular EHL contact • Model gear contact friction Model 53 Experiment 54 Thank you for your attention! Questions? Acknowledgements: 55 • • • Volvo Construction Equipment Scania Vicura AB • • Statoil Lubricants IonBond • Swedish Foundation for Strategic Research (SFF, ProViking) Thank you for your attention! Questions? 56 Test procedure 57 Test procedure 58 Example of EHL contact Symmetric behaviour μ Dry contact Hertz pressure Film pressure w´ u2 hmin hc u1 + 59 SRR outlet h(x) inlet x + 60 1D thermal traction model • Simulates temperature distribution and shear rate in oil film • Tait equation of state is used for the densitypressure-temperature dependence • The Doolittle free volume model is used for the viscosity-pressure-temperature dependence • A Carreau-Yusada model modified by Bair is used for the shear viscosity relationship 61 62 Test settings • Entrainment speed: 0.34 – 9.6 m/s • Slip: 0.02-49 % • Load: 200 N • Maximum Hertzian pressure: 1.7 GPa • Mean Hertzian pressure: 1.13 GPa • Temperatures: 40° and 90° C 63 64 Oil parameters Specimen parameters Description • “Smooth” ball and disc – – – – • 65 52100 (AISI) Bearing steel HRc:60 Ball surface roughness (Ra): 30 nm Disc surface roughness (Ra): 80 nm SL324 SL326 SL211 SL212 Type Ester Mineral Mineral Mineral Additive None None None EP Kinematic visc @40° C, cSt 103.7 109.3 Kinematic visc @100° C, cSt 15.4 11.98 5.3 5.3 Dynamic visc @40° C, mPas 94.5 94.9 27.1 27.1 Dynamic visc @100° C, mPas 13.4 9.97 4.46 4.46 “Rough” ball and disc Density@ 15° C, kg/m³ 928 885 872 872 – – – – Viscosity index 157 99 104 104 9310 (AISI) Gear steel HRc:63 Ball surface roughness (Ra): 200 nm Disc surface roughness (Ra): 220 nm 66 30.8 30.7 Diamond Like Carbon (DLC) in EHL Wedeven Associates Machine (WAM) no. 11 In literature • Focus on wear and boundary friction • Mostly pure sliding contacts New study • Focus on EHL friction in full film lubrication • Rolling and sliding contacts 67 68 Test combinations – Reference case 69 70 – Change in coefficient of friction with DLC coating Reference case Evans, R.; Cogdell, J. & Richter, G. Traction of Lubricated Rolling Contacts between Thin-Film Coatings and Steel Tribology Transactions, 2009, 52(1), 106-113 71 Xu, H. Development of a generalized mechanical efficiency prediction methodology for gear pairs Graduate School of The Ohio State University, 2005 72 Possible explanations for friction reduction Possible explanations for friction reduction • Boundary slip Boundary slip u2 Evans, R.; Cogdell, J. & Richter, G. Traction of Lubricated Rolling Contacts between Thin-Film Coatings and Steel Tribology Transactions, 2009, 52(1), 106-113 Choo, J.; Glovnea, R.; Forrest, A. & Spikes, H. A low friction bearing based on liquid slip at the wall Journal of Tribology, 2007, 129(3), 611-620 u1 u1<u2 73 74 sliding Possible explanations for friction reduction Possible explanations for friction reduction Boundary slip Boundary slip - Limitations u2 Profile for uncoated surface RMS surface roughness of about 1 nm Reduction in friction RMS surface roughness of about 10 nm No reduction in friction Combined roughness in present test: > 155 nm u1 u1<u2 75 sliding 76 1D Simulation model Possible explanations for friction reduction • Principle Thermal effects – Decrease in limiting shear stress – Decrease in shear resistance Lubricant 77 78 Steel 1D Simulation model 1D Simulation model Schematics Material parameters Coating/Steel Steel Steel Lubricant Density [kg/m³] Thermal conductivity [W/mK] Heat Capacity [J/kgK] Coating/Steel DLC 2500 2 1000 52100(AISI) 7810 46.6 475 Wojciechowski, K.; Zybala, R. & Mania, R. Application of DLC layers in 3-omega thermal conductivity method Journal of Achievements in Materials and Manufacturing Engineering, 2009, 37(2), 512-517 79 Kim, J.; Yang, H.-S.; Jun, Y. & Kim, K. Interfacial effect on thermal conductivity of diamond-like carbon films 80 Journal of Mechanical Science and Technology, 2010, 24(7), 1511-1514 Steel 1D Simulation model 1D Simulation model Film thickness Boundary conditions Heat source Steel Coating/Steel • Hamrock & Dowson central film thickness • Hsu and Lee thermal correction Hamrock, B. Fundamentals of fluid film lubrication McGraw-Hill, 1994 Hsu, C.-H. & Lee, R.-T. An Efficient Algorithm for Thermal Elastohydrodynamic Lubrication Under Rolling/Sliding Line Contacts 81 Journal of tribology, 1994, 116(4), 762-769 Steel Bulk temperature 82 Continuity Bulk temperature 1D Simulation model Data points for simulations Heat source Heat source, Q Q = μPh ∂P SU e + εT h ∂t hcen Measured friction coefficient Circular pressure SRR andHertzian entrainment speed Compression of lubricant Hamrock & Dowson Hsu & Lee 83 84 Effect of DLC coating on oil film temperature increase 85
© Copyright 2025 Paperzz