Additional Exercises: Solutions 4 1 Multi-Variable Functions Problem 1 1. f (x, y) = ln(x2 + y 4 ) ∂f 2x = 2 ∂x x + y4 4y 3 ∂f = 2 ∂y x + y4 2. f (x, y) = y x ∂f = y x · ln y ∂x ∂f = xy x−1 ∂y 3. f (x, y) = ln(y + p x2 + y 2 ∂f 1 p = ∂x y + x2 + y 2 1 ∂f p = ∂y y + x2 + y 2 4. f (x, y, z) = xyz ∂f = yzxyz−1 ∂x ∂f = xyz z ln x ∂y ∂f = xyz y ln x ∂z −1/2 x 1 2 · 2x = p x + y2 2 2 y x + y 2 + x2 + y 2 1 2 1 2 −1/2 · 1+ x +y · 2y = p 2 2 x + y2 · Additional Exercises: Solutions Problem 2 1. f (x, y) = (xy)3 + xy 2 ∂f = 3x2 y 3 + y 2 ∂x ∂f = 3x3 y 2 + 2xy ∂y ∂ 2f = 6xy 3 ∂x2 ∂ 2f = 6x3 y + 2x 2 ∂y ∂ 2f ∂ 2f = = 9x2 y 2 + 2y ∂x∂y ∂y∂x 2. f (x, y) = 3x2 − 4y 2 + 5xy + 4y ∂f = 6x + 5y ∂x ∂f = −8y + 5x + 4 ∂y ∂ 2f =6 ∂x2 ∂ 2f = −8 ∂y 2 ∂ 2f ∂ 2f = =5 ∂x∂y ∂y∂x 3. K(x1 , x2 ) = 5x1 x2 ∂K 5 = ∂x1 x2 ∂K 5x1 =− 2 ∂x2 x2 ∂ 2K =0 ∂x21 ∂ 2K 10x1 = 3 2 ∂x2 x2 2 ∂ K ∂ 2f 5 = =− 2 ∂x1 ∂x2 ∂x2 ∂x1 x2 2 Additional Exercises: Solutions 3 2 4. g(x, y, z) = 5x2 yz 4 + 8 xy 5 ∂g y2 = 10xyz 4 − 40 6 ∂x x 16y ∂g = 5x2 z 4 + 5 ∂y x ∂g = 20x2 yz 3 ∂z ∂ 2g ∂x2 ∂ 2g ∂y 2 ∂ 2g ∂z 2 ∂ 2g ∂x∂y ∂ 2g ∂x∂z ∂ 2g ∂y∂z 5. f (x, y) = = 10yz 4 + 240 = y2 x7 16 x5 = 60x2 yz 2 ∂ 2g 80y = 10xz 4 − 6 ∂y∂x x 2 ∂ g = = 40xyz 3 ∂z∂x ∂ 2g = = 20x2 z 3 ∂z∂y = x4 −3x2 y 3x+2y 2 9x4 + 8x3 y 2 − 9x2 y − 12xy 3 ∂f = ∂x (3x + 2y 2 )2 −9x3 − 4x4 y + 6x2 y 2 ∂f = ∂y (3x + 2y 2 )2 ∂ 2f 54x4 + 96x3 y 2 + 48x2 y 4 − 24y 5 = ∂x2 (3x + 2y 2 )3 ∂ 2f −12x5 + 108x3 y + 24x4 y 2 − 24x2 y 3 = ∂y 2 (3x + 2y 2 )3 ∂ 2f ∂ 2f −24x4 y − 27x3 − 32x3 y 3 − 54x2 y 2 + 24xy 4 = = ∂x∂y ∂y∂x (3x + 2y 2 )3 Additional Exercises: Solutions 6. K(x1 , x2 , x3 ) = x2 · e4x1 +5x3 ∂K = 4x2 · e4x1 +5x3 ∂x1 ∂K = e4x1 +5x3 ∂x2 ∂K = 5x2 · e4x1 +5x3 ∂x3 ∂ 2K ∂x21 ∂ 2K ∂x22 ∂ 2K ∂x23 ∂ 2K ∂x1 ∂x2 ∂ 2K ∂x1 ∂x3 ∂ 2K ∂x2 ∂x3 = 16x2 · e4x1 +5x3 =0 = 25x2 · e4x1 +5x3 ∂ 2f = 4 · e4x1 +5x3 ∂x2 ∂x1 ∂ 2f = = 20x2 · e4x1 +5x3 ∂x3 ∂x1 ∂ 2f = = 5 · e4x1 +5x3 ∂x3 ∂x2 = 7. x(A, K) = 120 · A0,85 · K 0,3 ∂x = 102 · A−0,15 K 0,3 ∂A ∂x = 36 · A0,85 K −0,7 ∂K ∂ 2x = −15, 3 · A−1,15 K 0,3 2 ∂A ∂ 2x = −25, 2 · A0,85 K −1,7 ∂K 2 ∂ 2x ∂ 2x = = 30, 6 · A−0,15 K −0,7 ∂A∂K ∂K∂A 4 Additional Exercises: Solutions 8. L(x, y, λ) = 8x0,3 y 0,7 + λ(200 − 6x − 5y) ∂L = 2, 4 · x−0,7 y 0,7 − 6λ ∂x 0,3 ∂L x = 5, 6 − 5λ ∂y y ∂L = 200 − 6x − 5y ∂λ ∂ 2L ∂x2 ∂ 2L ∂y 2 ∂ 2L ∂λ2 ∂ 2L ∂x∂y ∂ 2L ∂x∂λ ∂ 2L ∂y∂λ = −1, 68 · y 0,7 x−1,7 = −1, 68 · y 0,3 x−1,3 =0 ∂ 2L = −1, 68 · y −0,3 x−0,7 ∂y∂x ∂ 2L = = −6 ∂λ∂x ∂ 2L = = −5 ∂λ∂y = 9. f (x, y) = xy · exy ∂f = exy y + xy 2 ∂x ∂f = exy x + x2 y ∂y ∂ 2f xy 2 3 = e 2y + xy ∂x2 ∂ 2f = exy 2x2 + x3 y 2 ∂y ∂ 2f ∂ 2f = = exy (x2 y 2 + 3xy + 1) ∂x∂y ∂y∂x 5 Additional Exercises: Solutions 6 10. q L(r1 , r2 , r3 , λ1 , λ2 ) = 2 r12 + 3r22 − 5r32 + λ1 (10 − r1 − 2r2 + r3 ) + λ2 (20 − r1 r2 r3 ) ∂L ∂r1 ∂L ∂r2 ∂L ∂r3 ∂L ∂λ1 ∂L ∂λ2 =p =p =p 2r1 (r12 + 3r22 − 5r32 ) 6r2 (r12 + 3r22 − 5r32 ) −10r3 (r12 + 3r22 − 5r32 ) − λ1 − λ2 r2 r3 − 2λ1 − λ2 r1 r3 + λ1 − λ2 r1 r2 = 10 − r1 − 2r2 + r3 = 20 − r1 r2 r3 6r22 − 10r32 ∂ 2L p = ∂r12 (r12 + 3r22 − 5r32 )3 ∂ 2L 6r12 − 30r32 p = ∂r22 (r12 + 3r22 − 5r32 )3 ∂ 2L −10r12 − 30r22 p = ∂r32 (r12 + 3r22 − 5r32 )3 ∂ 2L ∂ 2L = =0 ∂λ21 ∂λ22 ∂ 2L −6r1 r2 ∂ 2L = =p 2 − λ2 r3 ∂r1 ∂r2 ∂r2 ∂r1 (r1 + 3r22 − 5r32 )3 ∂ 2L 10r1 r3 ∂ 2L = =p 2 − λ2 r2 ∂r1 ∂r3 ∂r3 ∂r1 (r1 + 3r22 − 5r32 )3 ∂ 2L ∂ 2L = = −1 ∂r1 ∂λ1 ∂λ1 ∂r1 ∂ 2L ∂ 2L = = −r2 r3 ∂r1 ∂λ2 ∂λ2 ∂r1 y ∂ 2L ∂ 2L 30r2 r3 = =p 2 − λ2 r1 ∂r2 ∂r3 ∂r3 ∂r2 (r1 + 3r22 − 5r32 )3 ∂ 2L ∂r2 ∂λ1 ∂ 2L ∂r2 ∂λ2 ∂ 2L ∂r3 ∂λ1 ∂ 2L ∂r3 ∂λ2 ∂ 2L ∂λ1 ∂λ2 = = = = = ∂ 2L = −2 ∂λ1 ∂r2 ∂ 2L = −r1 r3 ∂λ2 ∂r2 ∂ 2L =1 ∂λ1 ∂r3 ∂ 2L = −r1 r2 ∂λ2 ∂r3 ∂ 2L =0 ∂λ2 ∂λ1 Additional Exercises: Solutions Problem 3 1 1 f (x1 , x2 , x3 , x4 ) = x21 x2 + x1 x22 + x32 − 4x2 − x23 + x3 − x24 + 2x4 3 2 ∂f ∂x1 ∂f ∂x2 ∂f ∂x3 ∂f ∂x4 = 2x1 x2 + x22 = 0 = x21 + 2x1 x2 + x22 − 4 = 0 = −x3 + 1 = 0 = −2x4 + 2 = 0 from III: x3 = 1 from IV: x4 = 1 from I:x2 (2x1 + x2 ) = 0 x2,1 = 0 x2,2 = −2x1 x2,1 in III: x21 = 4 x1,1 = −2 x1,2 = 2 x1 in x2,2 = −2x1 x2,3 = 4 x2,4 = −4 → possible extreme points: 1. (2, 0, 1, 1) 2. (−2, 0, 1, 1) 3. (−2, 4, 1, 1) 4. (2, 4, 1, 1) 7 Additional Exercises: Solutions Hessian Matrix: 2x2 2x1 + 2x2 0 0 2x1 + 2x2 2x1 + 2x2 0 0 0 0 −1 0 0 0 0 −2 Hessian Matrix 0 4 0 0 8 at (2,0,1,1): 4 0 0 4 0 0 0 −1 0 0 0 −2 det H1 = 0 → undefined Hessian Matrix at (-2,0,1,1): 0 −4 0 0 −4 −4 0 0 0 0 −1 0 0 0 0 −2 det H1 = 0 → undefined Hessian Matrix at (-2,4,1,1): 8 4 0 0 4 4 0 0 0 0 −1 0 0 0 0 −2 det H1 = 8 > 0 det H2 = 16 > 0 det H3 = −16 < 0 → undefined Additional Exercises: Solutions Hessian Matrix at (2,-4,1,1): −8 −4 0 0 −4 −4 0 0 0 0 −1 0 0 0 0 −2 9 det H1 = −8 det H2 = 16 det H3 = −16 det H4 = 32 → negative definite → Maximum Problem 4 grad f = ∂f ∂x ∂f ∂y ∂f ∂z 2x 4 2 = −4y 3 e−y +z + 2y 4 2 2ze−y +z second-order derivatives: ∂ 2f =2 ∂x2 ∂ 2f =0 ∂x∂y ∂ 2f =0 ∂x∂z ∂ 2f =0 ∂y∂x ∂ 2f 3 −y 4 +z 2 3 2 −y 4 +z 2 + −4y e · −4y +2 = −4 · 3y e ∂y 2 ∂ 2f 4 2 = −4y 3 e−y +z · 2z ∂y∂z ∂ 2f =0 ∂z∂x ∂ 2f 4 2 = 2ze−y +z · −4y 3 ∂z∂y ∂ 2f 4 2 4 2 = 2e−y +z + 2ze−y +z · 2z 2 ∂z Additional Exercises: Solutions Hessian Matrix: 2 0 0 4 2 4 2 4 2 0 −12y 2 e−y +z + 16y 6 e−y +z + 2 −8zy 3 e−y +z 4 2 4 2 4 2 2e−y +z + 4z 2 e−y +z 0 −8zy 3 e−y +z 10 Hessian Matrix for point (0, 0, 0): 2 0 0 0 2 0 0 0 2 Finding the determinants: det H1 = 2 det H2 = 4 det H3 = 8 The Hessian Matrix is positive definite. The function has a minimum at point 0, 0, 0 Problem 5 a) U (p1 , p2 , p3 ) = p1 x1 + p2 x2 + p3 x3 = (120 − 20p1 + 2p2 + 3p3 )p1 + (80 + 8p1 − 15p2 + 2p3 )p2 + (100 + 7p1 + 8p2 − 30p3 )p3 = −20p21 − 15p22 − 30p23 + 10p1 p2 + 10p1 p3 + 10p2 p3 + 120p1 + 80p2 + 100p3 b) objective function: sales → max. −20p21 − 15p22 − 30p23 + 10p1 p2 + 10p1 p3 + 10p2 p3 + 120p1 + 80p2 + 100p3 I II III ∂U = −40p1 + 10p2 + 10p3 + 120 = 0 ∂p1 ∂U = 10p1 − 30p2 + 10p3 + 80 = 0 ∂p2 ∂U = 10p1 + 10p2 − 60p3 + 100 = 0 ∂p3 Additional Exercises: Solutions 11 p1 p2 p3 −40 10 10 −120 10 −30 10 −80 ·4 10 10 −60 −100 ·4 −40 10 10 −120 40 −120 40 −320 II+I 40 40 −240 −400 II+I −40 10 10 −120 0 −110 50 −440 ·5 0 50 −230 −520 ·11 −40 10 10 −120 0 −550 250 −2200 0 550 −40 10 10 −120 0 −550 250 −2200 0 0 −2530 −5720 III+II −2280 −7920 −2280p3 = −7920 66 p3 = 19 −550p2 + 250 · −40p1 + 10 · 66 = −2200 19 106 p2 = 19 106 66 + 10 · = −120 19 19 100 p1 = 19 Additional Exercises: Solutions 12 Problem 6 objective function: area → max. l·b l = length w = width constraint: length of the fence 2l + 2w = P 2l + 2w − P = 0 Lagrange function: L = l · w + λ (2l + 2w − P ) I II III ∂L = w + 2λ = 0 ∂l ∂L = l + 2λ = 0 ∂w ∂L = (2l + 2w − P ) = 0 ∂λ I=II: w=l in III: 2l + 2w = P 2l + 2l = P 4l = P l = 14 P b = 14 P ⇒ w = −2λ ⇒ l = −2λ Additional Exercises: Solutions 13 Problem 7 objective function: production → max Y (F, H) = 120F − F 2 + 80H − 4H 2 constraint: 60F + 40H = 20000 Lagrange function: L = 120F − F 2 + 80H − 4H 2 + λ (60F + 40H − 20000) ∂L = 120 − 2F + 60λ = 0 ∂F ∂L = 80 − 8H + 40λ = 0 ∂H ∂L = 60F + 40H − 20000 ∂λ I and II in III: 60 (60 + 30λ) + 40 (10 + 5λ) = 20000 3600 − 1800λ + 400 + 200λ = 20000 2000λ = 16000 λ=8 F F H H = 60 + 30λ = 300 = 10 + 5λ = 50 → → F = 60 + 30λ H = 10 + 5λ Additional Exercises: Solutions 14 Problem 8 objective function: production → max 2 1 f (x, y) = 2x 3 y 3 constraint: x + y = 3000 Lagrange function: 2 1 L = 2x 3 y 3 + λ (x + y − 3000) ∂L 4 1 1 = x− 3 y 3 + λ = 0 ∂F 3 2 2 2 ∂L = x 3 y− 3 + λ = 0 ∂H 3 ∂L = x + y − 3000 ∂λ I/II: 4 − 13 13 x y 3 2 32 − 23 x y 3 =1 2y =1 x x = 2y in III: 2y + y = 3000 y = 1000 x = 2000 4 1 1 − λ = x− 3 y 3 3 2 2 −2 − λ = x3 y 3 3 Additional Exercises: Solutions 15 Problem 9 objective function: costs → min. K(t, m) = 40t + 10m constraint: √ √ 30 · t · m = 900 √ √ 30 · t · m − 900 = 0 Lagrange function: √ √ L = 40t + 10m + λ 30 · t · m − 900 I II III √ m ∂L = 40 + λ 15 √ =0 ∂t t √ ∂L t = 10 + λ 15 √ =0 ∂m m √ √ ∂L = 30 · t · m − 900 = 0 ∂λ I/II: 4 = √ m √ t √ √t m m t m = 4t 4= √ √ in III: 30 t · 4t = 900 30 · 2t = 900 t = 15 m = 60 → → √ m 40 = −15λ √ t √ t 10 = −15λ √ m Additional Exercises: Solutions 16 Problem 10 objective function: K = 4a2 − 16a + 5b2 − 30b + 70 → min constraint: 40a + 20b = 380 Lagrange function: 4a2 − 16a + 5b2 − 30b + 70 + λ (40a + 20b − 380) ∂L = 8a − 16 + 40λ = 0 ∂a ∂L = 10b − 30 + 20λ = 0 ∂b ∂L = 40a + 20b − 380 = 0 ∂c 4a − 8 = 10b − 30 5 11 a= b− 2 2 11 5 b− + 20b = 380 40 2 2 100b − 220 + 20b = 380 b=5 5 11 a= b− =7 2 2 → → −20λ = 4a − 8 −20λ = 10b − 30
© Copyright 2026 Paperzz