1 SECONDARY SCHOOL IMPROVEMENT PROGRAMME (SSIP) 2015 GRADE 12 SUBJECT: MATHEMATICS LEARNER HOMEWORK SOLUTIONS (PAGE 1 OF 18) © Gauteng Department of Education 2 SESSION 5 TOPIC: TRIGONOMETRY SOLUTIONS TO SECTION C 1(a) 1(b) 1(c) sin 34 cos10 cos 34 sin10 sin12 cos12 sin(34 10) sin12 cos12 sin 24 sin12 cos12 2sin12 cos12 2 sin12 cos12 sin( 285) sin 285 sin(360 75) ( sin 75) sin 75 sin(45 30) sin 45 cos 30 cos 45 sin 30 2 3 2 1 6 2 4 2 2 2 2 cos 2 15 sin15 cos 75 cos 2 15 sin15 cos15 tan15 cos 2 15 sin15 cos(90 15) sin15 cos 2 15 sin15 cos15 cos15 cos 2 15 sin15.sin15 cos 2 15 sin 2 15 cos 2 15 sin 2 15 1 cos 2 15 sin 2 15 cos 2(15) cos 30 sin 24 2sin12 cos12 2 (3) sin 285 sin 75 sin 45 cos30 cos 45 sin 30 2 3 2 1 2 2 2 2 6 2 4 (5) cos2 15 sin15.sin15 sin15 cos15 cos2 15 sin 2 15 1 cos30 3 2 (6) 3 2 © Gauteng Department of Education 3 2(a) sin(45 ).sin(45 ) sin 45 cos cos 45 sin sin 45 cos cos 45 sin 2 2 2 2 cos sin cos sin 2 2 2 2 2 2 (cos sin ) (cos sin ) 2 2 2 (cos sin )(cos sin ) 4 1 (cos 2 sin 2 ) 2 1 cos 2 2 2(b) 3. sin 75.sin15 sin(45 30).sin(45 30) 1 cos 2(30) 2 1 11 1 cos 60 2 22 4 sin 4 expansion of sin(45 ) expansion of sin(45 ) sin 45 cos 45 2 2 (cos2 sin 2 ) 1 cos 2 2 (5) 45 30 ; 45 30 1 cos 60 2 1 4 (3) sin 2(2) 2sin 2.cos 2 2 2sin .cos 1 2sin 2 2sin 2.cos 2 2sin .cos 1 2sin 2 4sin .cos 8sin 3.cos (4) 4sin .cos 8sin .cos 3 4(a) (tan x 1)(sin 2 x 2 cos 2 x) sin x 1 2sin x.cos x 2 cos 2 x cos x sin x cos x 2 cos x(sin x cos x) cos x 2(sin x cos x) 2 2(sin 2 x 2sin x.cos x cos 2 x) 2(1 2sin x.cos x) sin x cos x 2sin x cos x sin x cos x cos x 2cos x(sin x cos x) 2(sin 2 x 2sin x.cos x cos2 x) 2(1 2sin x.cos x) © Gauteng Department of Education (6) 4 4(b) 5(a) cos2 x sin 2 x cos 2 x cos x sin x cos 2 x sin 2 x cos x sin x cos x sin x cos x sin x cos x sin x cos x sin x sin(45 ) cos x sin x cos x sin x cos x sin x (3) sin 45.cos cos 45.sin 2 2 .cos .sin 2 2 2 cos sin 2 sin 45.cos cos 45.sin 2 2 .cos .sin 2 2 2 cos sin 2 2 cos sin 2 5b) (3) 2sin .cos sin 2 2sin 2 45 2sin .cos 2 sin 45 2 2 cos sin 2sin .cos 2 2 2 cos sin 2 2sin .cos 2 4 2sin .cos cos sin 2 2 cos sin 2 2 cos sin 2 2 cos2 2sin cos sin 2 cos2 sin 2 1 2 2sin .cos cos 2 2sin cos sin 2 cos2 sin 2 1 © Gauteng Department of Education (6) 5 6(a) cos diagram Pythagoras p 5 x p r 5 p 2 y 2 ( 5) 2 y 5 p 2 p 5 p2 5 y 5 p2 5 p2 tan p 2 (4) y 5 p2 5 p2 tan p 6(b) cos 2 2cos2 1 cos 2 2cos2 1 2 2 p 2 1 5 2 p2 1 5 p 2 1 5 2 p2 1 5 (3) 7. sin 61 a 1 x ( a ) (1) 2 2 ( 1 a ; a ) 2 x 1 a 1 x 1 a 61 2 diagram x 1 a cos58 2cos2 29 1 2sin 2 61 1 2a 1 (6) cos 73 cos15 sin 73 sin15 cos(73 15) cos 58 2 cos 2 29 1 2sin 2 61 1 2( a ) 2 1 2a 1 © Gauteng Department of Education 6 8(a) 8(b) ˆ 94 s of a In KNI: N sin 94 sin 48 15 KN KNsin94 15sin 48 15sin 48 KN 11,17439264metres sin 94 GN And in GNK: tan 51 KN GN KN tan 51 13,80 metres Width is equal to the perpendicular distance between KI and N. width sin 38 KN width KN sin 38 38 48 sin 94 sin 48 15 KN KN 11,17439264 metres GN tan 51 KN GN 13,80 metres (4) width distance width sin 38 KN width 5,8 metres width 5,8 metres © Gauteng Department of Education (3) 7 SESSION 6 TOPIC: CALCULUS SOLUTIONS TO SECTION C f ( x h) f ( x ) h 0 h 1 1 1 ( x h) 2 1 x 2 4 4 f ( x) lim h 0 h 1 1 1 ( x 2 2 xh h 2 ) 1 x 2 4 4 f ( x) lim h 0 h 1 1 1 1 1 x 2 xh h 2 1 x 2 4 2 4 4 f ( x) lim h 0 h 1 1 xh h 2 4 f ( x) lim 2 h 0 h 1 1 h x h 2 4 f ( x) lim h 0 h 1 1 f ( x) lim x h h 0 2 4 1 f ( x) x 2 1(a)(2) 1 f (4) (4) 2 2 1(a)(1) 1(a)(3) f ( x) lim 1 f ( x) 1 x 2 4 1 f (2) 1 (2) 2 4 f (2) 0 The answer represents the y-value corresponding to x 2 1 4 1 ( x h) 2 1 4 1 x 2 1 1 1 4 2 4 1 1 xh h2 2 4 1 1 x h 4 2 1 x 2 x 2 xh h2 (6) answer (1) f (2) 0 interpretation © Gauteng Department of Education (2) 8 1(a)(4) 1(b) 1 f ( x) 1 x 2 4 f (2) 0 1 f (4) 1 (4) 2 4 f (4) 3 (2 ; 0) and (4 ; 3) 3 0 3 1 Average gradient 4 ( 2) 6 2 3 3 xh x f ( x) lim h0 h 3 3 f ( x) lim x h x h0 h f ( x) lim h 0 f ( x) lim h 0 f ( x) lim 3 x 3( x h ) x( xh) h 3 x 3 x 3h x( xh) h f (2) 7 f (4) 31 31 (7) 4 (2) 4 (4) 3 3 xh x 3 3 xh x 3h x( xh) h 3 x ( x h) 3 2 x (5) 3h x( xh) h 0 h 3h 1 f ( x) lim h 0 x ( x h ) h 3 f ( x) lim h 0 x ( x h ) 3 f ( x) 2 x © Gauteng Department of Education 9 2(a) f ( x h) f ( x ) h0 h 2( x h) (2 x) lim h0 h 2 x 2h 2 x lim h0 h 2h lim h0 h lim( 2) f ( x) lim 2( x h) (2 x) x2 2 x 2h h 2 (4) h0 2 2(b) 2( x h)3 (2 x3 ) h0 h 2( x h)( x h) 2 2 x 3 g ( x) lim h0 h g ( x) lim 2( x h)( x 2 2 xh h 2 ) 2 x 3 h0 h 3 2 2( x 2 x h xh 2 x 2 h 2 xh 2 h3 ) 2 x 3 g ( x) lim h0 h 2( x3 3 x 2 h 3 xh 2 h3 ) 2 x3 g ( x) lim h0 h 3 2 2 x 6 x h 6 xh 2 2h3 2 x3 g ( x) lim h0 h 2 2 6 x h 6 xh 2h3 g ( x) lim h0 h h( 6 x 2 6 xh 2h) g ( x) lim h0 h 2 g ( x) lim ( 6 x 6 xh 2h) 2( x h)3 (2 x3 ) 6 x2h 6 xh2 2h3 (6 x 2 6 xh 2h) 6x 2 g ( x) lim h0 g ( x) 6 x 2 g (2) 6(2) 2 24 © Gauteng Department of Education (5) 10 3(a) f ( x) (4 x 3) 2 f ( x) 16 x 2 24 x 9 16 x2 24 x 9 32 x 24 (2) f ( x) 16 2 x 2 1 24 0 f ( x) 32 x 24 3(b) 3(c) 1 Dx 3 x x 1 1 Dx x3 x 2 2 3 1 1 x 3 x 2 3 2 1 1 2 3 3x 3 2 x 2 D x ( x 2 x ) 2 x3 x D x x 4 2 x 2 x x 1 D x x 4 2 x 2 x 2 x 5 D x x 4 2 x 2 x 4 x3 5 x 2 1 1 1 2 1 32 1 32 x x 3 2 1 1 2 3 3x 3 2 x 2 (3) 5 x 4 2 x 2 x 3 (5) 3 3(d) 4 x3 5 x 2 1 2 x2 x 5 y x y 2x x 2 1 2 3 2 1 1 x2 3 2 x 2 1 5x 5 x 1 1 y 2x 1 5x 1 dy 5 3 3x 2 x 2 dx 2 1 dy 5 3x 2 3 dx 2x 2 5 2 3x 2 x 1 2 2 1 3x 2 1 2 3 2 5 3 2x 2 (4) © Gauteng Department of Education 11 4(a) y f ( x) 3x 2 2 x 2 xT 4 f (4) 3(4) 2 2(4) 2 f (4) 58 yT 58 mT f ( x) 6 x 2 f (4) 58 f ( x) 6 x 2 f (5) 26 y 58 26( x (4)) y 26 x 46 (5) f (4) 6( 4) 2 f (5) 26 y yT mt ( x xT ) 4(b) y 58 26( x (4)) y 58 26 x 104 y 26 x 46 y a ( x 0)( x 4) Substitute the point (3 ; 6) 6 a (3 0)(3 4) 6 3a a 2 y 2( x 0)( x 4) y 2 x( x 4) y 2 x 2 8 x f ( x) 2 x 2 8 x f ( x) 4 x 8 f (3) 4(3) 8 4 y yT mt ( x xT ) y 6 4( x 3) y 6 4 x 12 y 4 x 18 © Gauteng Department of Education y a( x 0)( x 4) a 2 f ( x) 2 x2 8x f ( x) 4 x 8 f (3) 4(3) 8 4 y 4 x 18 (6) 12 5. x-intercepts: 0 x3 3 x 2 4 y-intercept: ( x 1)( x 2 4 x 4) 0 ( x 1)( x 2)( x 2) 0 x 1 or x 2 f ( x) 3x 2 6 x 4 0 x3 3 x 2 4 ( x 1)( x2 4 x 4) 0 x 1 or x 2 f ( x) 3x 2 6 x 0 3x 2 6 x 0 x2 2 x 0 x( x 2) x 0 or x 2 f (0) (0)3 3(0)2 4 4 For x 0 Max turning point at (0 ; 4) f (2) (2)3 3(2)2 4 0 For x 2 Min turning point at (2 ; 0) f ( x) 3 x 2 6 x f ( x) 6 x 6 0 6x 6 6 x 6 x 1 0 3x 2 6 x x 0 or x 2 (0 ; 4) (2 ; 0) f ( x) 6 x 6 x 1 (1;2) f (1) (1)3 3(1) 2 4 f (1) 2 The point of inflection is (1;2) (0;4) (1;2) (1;0) (2;0) intercepts with the axes turning points shape point of inflection (15) © Gauteng Department of Education 13 6(a) h( x) 3x 2 2ax b h(1) 3(1) 2 2a(1) b 0 3 2a b 2a b 3 (i) h(2) 3(2) 2 2a(2) b 0 12 4a b 4a b 12 (ii) 6a 9 (i) (ii) 3 2 3 2 b 3 2 b6 Average gradient 10 ( 3,5) 2 (1) 13,5 3 9 2 3 h( x ) x 3 x 2 6 x 2 h( x) 3x 2 3x 6 h(2) 3(2)2 3(2) 6 h(2) 12 Point of contact (2 ; 2) y 2 12( x 2) y 12 x 22 h( x) 3x 2 2ax b h(1) 3(1)2 2a(1) b 2a b 3 h(2) 3(2)2 2a(2) b 4a b 12 3 2 b6 a (7) a 6(b) 6(c) 6(d) h( x) 3 x 2 3 x 6 h( x) 6 x 3 6 x 3 0 1 x 2 10 (3,5) 2 (1) 9 2 (2) 3 2 2 h( x) 3x 3x 6 h(2) 12 y 12 x 22 h(2) 12 h( x ) x 3 x 2 6 x (5) h( x) 6 x 3 6x 3 0 x 1 2 (3) © Gauteng Department of Education 14 SESSION 7 TOPIC: ANALYTICAL GEOMETRY SOLUTIONS TO SECTION C 1(a) 1(b) 2 5 4 (1) E ; 2 2 7 3 E ; 2 2 (2) 7 3 x x y yC E ; A C ; A 2 2 2 2 7 3 1 xC 3 yC E ; ; 2 2 2 2 7 1 xC 3 3 yC or 2 2 2 2 7 1 xC or 3 3 yC xC 6 1(c) 7 3 E ; 2 2 or 7 1 xC 2 2 3 3 yC 2 2 xC 6 yC 0 C(6 ; 0) (5) yC 0 C(6 ; 0) 43 1 mAB 1 2 1 1 0 ( 1) 1 mCD 1 65 1 mAB mCD AB||CD 3 (1) 4 mAD 1 1 5 4 40 4 mBC 1 2 6 4 mAD mBC mAB mCD AB||CD mAD mBC AD||BC ABCD is a parallelogram mAB mAD 1 Â 90 ABCD is a rectangle (10) AD||BC ABCD is a parallelogram © Gauteng Department of Education 15 ABCD is a parallelogram Now mAB mAD (1) (1) 1 AB AD Â 90 ABCD is a rectangle (since one interior angle of parallelogram ABCD is 90) (d) AB2 (2 1) 2 (4 3) 2 AB2 (2 1)2 (4 3)2 AB2 1 1 AB 2 AB2 2 AD2 (5 1)2 (1 3)2 AD 32 Area ABCD (4 2)( 2) AB 2 AD 2 (5 1) 2 (1 3) 2 Area ABCD 8 units2 AD 16 16 2 (6) AD 32 16 2 4 2 Area ABCD AD AB Area ABCD (4 2)( 2) 8 units 2 B(2;4) A(1;3) C(6;0) D(5; 1) © Gauteng Department of Education 16 (e) tan mBD 4 (1) 25 5 tan 3 180 59 121 tan tan mDC 0 (1) 1 1 65 1 tan 1 45 ˆ 45 OCD tan 121 45 76 2(a) 2(b) 3 y px 6 p y x2 3 p tan135 3 p 1 3 p3 mAB mBC 25 k 42 36 2k 3 k2 1 2k 3 2k 3 k 2 k 5 tan 121 5 3 tan 1 45 18, 43 ˆ 45 OCD 121 45 76 (8) p x2 3 p tan135 3 p 1 3 p3 y (4) mAB mBC working out gradients k 5 (3) © Gauteng Department of Education 17 3(a) x 2 6 x 3 y 2 2 y 1 p 3 1 2 2 x 3 y 1 p 10 2 2 3(b) 4(a) 4(b) 3 2 2 centre 3; 1 2 2 32 12 x 32 y 12 p 10 centre p 10 18 p 10 p 8 3 x 4 y 7 4 y 3 x 7 3 7 y x 4 4 3 mCB 4 4 mtangent 3 4 y (1) ( x (1)) 3 4 y 1 ( x 1) 3 4 4 y 1 x 3 3 4 1 y x 3 3 C(x ; 2) Substitute y 2 into 3 x 4 y 7 3 x 4(2) 7 3 x 15 x 5 C( 5; 2) 3 2 (4) 2 p 10 p 8 (2) 3 7 y x 4 4 3 mCB 4 4 mtangent 3 4 y (1) ( x (1)) 3 4 1 y x 3 3 (5) 3x 4(2) 7 x 5 ( x 5)2 ( y 2)2 r 2 ( x 5)2 ( y 2)2 25 ( x 5) 2 ( y 2) 2 r 2 Now r 5 ( x 5) 2 ( y 2) 2 25 © Gauteng Department of Education (4) 18 4(c) y yB x x C( 5; 2) D B ; D 2 2 x (1) yD (1) C( 5; 2) D ; 2 2 x 1 y 1 5 D and 2 D 2 2 10 xD 1 and 4 yD 1 xD 9 xD 1 2 yD 1 2 2 D( 9;5) 5 and yD 5 D( 9;5) © Gauteng Department of Education (4)
© Copyright 2026 Paperzz