THE AQUEOUS AND NON-AQUEOUS ELECTROCHEMISTRY OF POLYACETYLENE : APPLICATION IN HIGH POWER DENSITY RECHARGEABLE BATTERIES A. Macdiarmid, R. Kaner, R. Mammone, A. Heeger To cite this version: A. Macdiarmid, R. Kaner, R. Mammone, A. Heeger. THE AQUEOUS AND NON-AQUEOUS ELECTROCHEMISTRY OF POLYACETYLENE : APPLICATION IN HIGH POWER DENSITY RECHARGEABLE BATTERIES. Journal de Physique Colloques, 1983, 44 (C3), pp.C3543-C3-550. <10.1051/jphyscol:19833109>. <jpa-00222618> HAL Id: jpa-00222618 https://hal.archives-ouvertes.fr/jpa-00222618 Submitted on 1 Jan 1983 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. JOURNAL DE PHYSIQUE Colloque C3, supplement au n06, Tome 44, juin 1983 page C3-543 THE AQUEOUS AND NON-AQUEOUS ELECTROCHEMISTRY OF POLYACETYLENE : APPLICATION IN HIGH POWER DENSITY RECHARGEABLE BATTERIES A. G. ~ a c ~ i a r m i , d *R.B. ~ a n e r *, R. J . Mammone* and A . J. ~ e e ~ e r ~ *Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsy Zvania 191 04, U. S. A. ""~epartmentof Physics, University of CaZifornia, Santa Barbara, California 93106, U. S.A. - R6surn6 Le p o l y a c 6 t y l S n e p e u t G t r e d o p 6 p a r d e s moyens c h i m i q u e s ou 6 l e c t r o c h i m i q u e s e n s o l u t i o n a q u e u s e j u s q u ' a u regime m g t a l l i q u e . Les c a r a c t 6 r i s t i q u e s d e c e r t a i n e s b a t teries r e c h a r g e a b l e s s 6 l e c t i o n n 6 e s , q u i employent d e s 6 l e c t r o d e s d e (CH), d a n s d e s 6 l e c t r o l y t e s n o n - a q u e u x , s o n t decrites. A b s t r a c t - P o l y a c e t y l e n e c a n b e doped e i t h e r c h e m i c a l l y o r e l e c t r o c h e m i c a l l y i n aqueous s o l u t i o n t o t h e m e t a l l i c regime. The c h a r a c t e r i s t i c s o f s e l e c t e d r e c h a r g e a b l e b a t t e r i e s e m p l o y i n g ( C H ) , e l e c t r o d e s i n non-aqueous e l e c t r o l y t e s a r e described. I - p-DOPING OF ( C H ) , I N AQUEOUS SOLUTION I t is g e n e r a l l y b e l i e v e d t h a t p-doped ( C H I , r e a c t s r e a d i l y w i t h water. U n t i l t h e p r e s e n t s t u d y was u n d e r t a k e n , t h e o n l y a p p a r e n t exception t o t h i s water i n s t a b i l i t y involved t h e electrochemical p-doping ( o x i d a t i o n ) o f ( C H ) , f i l m i n a n a q u e o u s 0 . 5 M s o l u t i o n of K I . Doping t o o k p l a c e i n a few m i n u t e s t o g i v e ( C H 1 0 . 0 7 ) ~ having a c o n d u c t i v i t y i n t h e m e t a l l i c regime /I/. The sum o f t h e e l e m e n t a l a n a l y s e s f o r C , H , and I was 9 9 . 8 % . T h i s showed t h a t no r e a c t i o n w i t h w a t e r , t o i n c o r p o r a t e oxygen i n t o t h e ( C H ) , had t a k e n p l a c e , a t l e a s t d u r i n g t h e t i m e n e e d e d f o r d o p i n g . T h i s o b s e r v a t i o n was most s u r p r i s i n g . The a b s e n c e o f r e a c t i o n w i t h w a t e r would a t f i r s t s i g h t a p p e a r t o b e i n c o n s i s t e n t w i t h is a polycarbonium t h e f a c t t h a t p-doped ( C H ) x , i . e . , (CH'YA i o n d e l o c a l i n e d w i t h i n s o l r t o n s and p o l a r g n i : f s i n c e a l l other carbonium i o n s r e a c t i n s t a n t l y w i t h n e u t r a l w a t e r and a r e s t a b l e We only i n c e r t a i n concentrated a c i d s o r "super-acid" s o l u t i o n s . w i s h e d t o a s c e r t a i n w h e t h e r ( C H ) , doped w i t h i o d i n e was u n i q u e o r w h e t h e r o t h e r d o p a n t s would b e h a v e s i m i l a r l y w i t h r e s p e c t t o i t s r e l a t i v e s t a b i l i t y i n aqueous s o l u t i o n s . - cis (CH), f i l m a n d a p i e c e o f P t f o i l w e r e p l a c e d i n a s a t u r a t e d s o l u t i o n of 0.5 M NaAsF6 i n 50% a q u e o u s HF. The (CH), was a t t a c h e d t o t h e p o s i t i v e e l e c t r o d e and t h e P t t o t h e n e g a t i v e e l e c t r o d e , r e s p e c t i v e l y , o f a d . c . power s u p p l y . A c o n s t a n t p o t e n t i a l o f 1.OV was a p p l i e d b e t w e e n t h e e l e c t r o d e s f o r c a . 30 m i n u t e s and t h e f i l m was t h e n washed i n 5 0 % HF and pumped i n t h e vacuum s y s t e m f o r 18 h o u r s . I n several d i f f e r e n t experiments, c a r r i e d o u t under s l i g h t l y d i f f e r e n t c o n d i t i o n s , f l e x i b l e , A p i e c e ~f E. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19833109 JOURNAL DE PHYSIQUE C3-544 (z. golden films having good metallic conductivity 10 to 100 ohm-lcm-l) were obtained. It was most surprising to find that the films contained no oxygen. The fb;8s&ne content varied from one preparation to another, e.g. [CH ( A ~ F ~ . ~ ) - (sum ~ . ~ ~ ~ ~ ~ [ c H + ~ ' ~ ~ ~ of C + H + As + F analyses = 100.2%) and (AsF4.7)-0.0291xr (sum of C + H + As + F analyses = 100.3%). The nature of the dopant species and the cause of the variable fluorine content is currently being investigated. It is believed that the dopant probably consists of a mixture of the (AsF6)- and (AsF4)- ions. We have shown previously that (CH), can be doped readily to the metallic regime when exposed to the vapor from 98% sulfuric acid or 72% perchloric acid /2/. In view of the surprising electrochemical results obtained above, we wished to ascertain if (CH), could be doped in aqueous solutions of these acids. We therefore studied the (d.c.) conductivity of a strip of (CH), film immersed in acid solutions of different strengths. At all concentrations except the lowest, the conductivity of the partly doped (CH)x was much greater than that of the ionic conductivity of the solution. As can be seen from Fig. 1 and Fig. 2, the conductivity of the (CA), increased rapidly at first and then increased only very slowly for a period of s.24 hours, presumably due to slow diffusion of the oxidizing acids into the interior of the (CH), fibrils. The quasi-equilibrium conductivity values shown 18 Molar -+ 7 E, - 1 15 Molar 0 12 Molar -1 E r: -2 0 -b 0 0 9 Molar 6 Molar -3 -4 -5 TIME (rnln) Fig. 1 - Conductivity of &-(CH)x film immersed in aqueous sulfuric acid solutions of different concentrations. in Fig. 1 and Fig. 2 are plotted in Fig. 3 and Fig. 4 as a function of acid concentration (molarity). In each case, the conductivity increases over five orders of magnitude to metallic levels! It is most interesting to find that (CH)x can actually undergo a semiconductor-metal transition in aqueous solution and that the stability of the (cH+Y) ion to water is exceptionally great under certain conditions. When the film doped in 18 M sulfuric acid was washed with cyclohexene to remove free acid it was flexible and golden and had a conductivity of 1 x 1 0 ~ohm-lcrn-l. t3- 12 Molar 4-2- -- 4-1 - 9 Molar 0. I -g IE -1. c 6 Molar f -2 3 Molar 2 -3 b -4 (3 3 -5 -6. I l l l r l l 5 10 15 2 0 25 3 0 TIME (min) Fig. 2 - Conductivity of *-(CH), film immersed in aqueous perchloric acid solutions of different concentrations. 1 2 4 6 8 10 12 14 16 18 MOLARITY OF Fig. 3 - Relationship between quasi-equilibrium values of conductivity of cis-(CH)x film immersed in aqueous sulfuric acid solutions of different concentrations. JOURNAL DE PHYSIQUE Fig. 4 - Relationship between quasi-equilibrium values of confilm immersed in aqueous perductivity of *-(CH), chloric acid solutions of different concentrations. In view of the known oxid tion potentials (vs. Li/~i+) of (CH),/(CH+~)~ , H2S03/S04-', and C1-/ClO - which are -2. l V , -3.2V and -4.36V, respectively, the expected ioping (oxidation) reactions which occurred are: The greater the concentration of the acids, the greater will be the to water value of y in each case. The high stability of (cH'Y), in certain cases is believed to be due to the extensive delocalization of charge which varies according to the nature of the dopant anion associated with the (cH+Y) ion. 11 - BATTERY CELLS USING (CH), AND/OR p-DOPED (CH), (1) Neutral (CH)x cathode + Li anode: Selected electrochemical characteristics of a cell constructed from cis-polyacetylene film 0.lmm; ca. 3.5mg/cm2) and lithiup metal immersed in an (thickness in THF have been studied. A spontaneous electrolyte of 1.OM Li=o4 electrochemical reaction occurs when the (CH), and Li electrodes are connected by a wire external to the cell. The discharge reactions are: z. x y ~ i ++ xye- Anode Reaction xyLi Cathode Reaction (CH), + xye- + (3) + (CH-Y), (4) + Liy+ (CH-Y), (5) giving the overall net reaction xyLi + where y<0.1. I t should be noted t h a t t h e r e a c t i o n g i v e n by e q u a t i o n ( 5 ) is t h e d i s c h a r g e r e a c t i o n o f a v o l t a i c c e l l and t h a t t h e c e l l , i n i t s c o m p l e t e l y c h a r g e d s t a t e c o n s i s t s o f p a r e n t , n e u t r a l (CH), which a p p e a r s t o b e s t a b l e i n d e f i n i t e l y i n t h e e l e c t r o l y t e . ( S e e F i g . 5 ) R e v e r s a l o f t h e r e a c t i o n g i v e n b y e q u a t i o n ( 5 ) may b e o b t a i n e d o n c h a r g i n g a t a f i x e d a p p l i e d p o t e n t i a l o f 2.5V, t h e p o t e n t i a l ( V S . L i ) o f t h e p a r e n t , n e u t r a l (CH), i n t h i s e l e c t r o l y t e . 5 Fig. 5 - 10 h.8~;; 15 20 25 TIME ( d a y s ) 30 35 40- Open c i r c u i t v o t V , v a l u e s o f (CH), ( u p p e r c u r v e ) , ( lower c u r v e ) , i n a 1 M LiC1o4 and t ~ i : 0 7 ( ~ ~ s o l u t i o n ' l n TRF. T h e Vo v a l u e f o r ( c H ) ~w a s d e t e r m i n e d o n a p r v i o u s l y r e d u c e d E i l m which had t $ e n b e e n r e o x i d i z e d t o (CHI,. T h e s m a l l i n i t i a l d e c r e a s e i n Vo is caused b y d i f f u s i o n o f t r a c e s o f r e m a i n i n g d o p a n t Erom t h e i n t e r i o r t o t h e e x t e r i o r o f t h e (CH), f i b r i l s . , 8 Although r e d u c t i o n o c c u r s s p o n t a n e o u s l y , most s t u d i e s were c a r r i e d o u t a t a constant applied potential a t various selected values jn o r d e r t o s t u d y t h e s y s t e m i n a c o n t r o l l a b l e manner. Significant r e d u c t i o n o f t h e (CH), o c c u r s o n l y a t a n a p p l i e d p o t e n t i a l l e s s t h a n 1.7V. A f t e r t h e o n s e t o f r e d u c t i o n , t h e o p e n c i r c u i t v o l t a g e , Vocr f a l l s r a p i d l y up t o a r e d u c t i o n l e v e l o f 1%a n d t h e n d e c r e a s e s more s l o w l y . z. The r e l a t i o n s h i p between c e l l p o t e n t i a l and d e g r e e o f r e d u c t i o n h a s been s t u d i e d up t o 10% r e d u c t i o n l e v e l s . The r e d u c t i o n p r o c e s s was s t o p p e d a t i n t e r v a l s a n d t h e Voc v a l u e ( v s . L i ) w a s m e a s u r e d immediately. The c e l l was t h e n a l l o w e d t o s t a n d f o r a p e r i o d o f 24 h o u r s i n g r d e r t o p e r m i t p a r t i a l e q u i l i b r a t i o n o f t h e ~ i i' o n s w i t h i n t h e 200A (CH), f i b r i l s . T h e Voc v a l u e s w e r e a g a i n r e c o r d e d . An i n c r e a s e i n p o t e n t i a l was o b s e r v e d o n s t a n d i n g . T h i s is c a u s e d by a d e c r e a s e i n t h e d e g r e e o f r e d u c t i o n o f t h e o u t s i d e o f t h e (cH-Y), f i b r i l s a s the counter Lif ions d i f f u s e towards t h e center of a f i b r i l t o g e t h e r w i t h t h e i r a t t e n d a n t n e g a t i v e charge on t h e polyacetylene. E x a c t l y t h e o p p o s i t e e f f e c t is observed a f t e r a p a r t i a l t o a less e l e c t r o c h e m i c a l o x i d a t i o n ( c h a r g e r e a c t i o n ) o f (CH-Y), reduced s t a t e . I n t h i s c a s e , t h e Voc f a l l s o n s t a n d i n g . JOURNAL DE PHYSIQUE C3-548 Coulombic efficiencies, (Qdischar e/Qcharge)fOO where (&ischar e refers to the total coulombs lnvoyved In a glven discharge (re%uction) process and Qcharge refers to the total coulombs involved in a charge (oxidation) process to 2.5V have been determined for several different levels of reduction. Values of 5. 99% were found up to ca. 6.0% reduction levels. Somewhat poorer values were found at higher levels of reduction. These high coulombic efficiencies are undoubtedly related, at least in part, to the excellent chemical stability of (CH), and partly reduced polyacetylene in the electrolyte as shown by Fig. 5. Studies have been made of the change in voltage during constant current discharges of O.lmA (19.8Amps/Kg), 0.5mA (98.8Amps/Kg) and l.OmA (197.6Amps/Kgl to 6.0% reduction of the (CH),, i.e., to a composition of [Lin,06(~~)~.06]xin each case, (See Fig. 6). ob o; 3.0 t IAo tbo 2do 2 0 ; MINUTES 3b0 3&0 MINUTES Fig. 6 - Constant current discharge characteristics of a (CH),/LiC104,(THF)/Li cell. The weight of the (CHI, employed (4.9mg) and the weight of the ti consumed in the discharge reaction were used to calculate the normalized discharge rates in Amps/Kg given above. Even though each constant current discharge involved the same number of coulombs and hence resulted in the same average percent reduction, the final discharge voltages, Vd, decreased as the discharge currents increased, e.g., Vd=0.62V at O.lmA, Vd=0.52V at 0.5mA and Vd=0.35V at l.0mA. This is due to the fact that the diffusion equilibrium involving migration of the ~ i + ions from the exterior to the interior of the (CH), fibrils becomes less complete the more rapidly the electrochemical reduction process is carried out. The energy density and average power density values obtained in each of the above discharges are, respectively, O.lmA, 137.0 Watt hr/Kg and 22.6 Watts/Kg; 0.5mAt 124.6 Watt hr/Kg and 102.7Watts/Kg; l.OmA, 116.8 Watt hr/Kg and 192.3 watts/Kg. Maximum p o w e r d e n s i t y o f a c e l l u s i n g 4 . 5 cm2 (9 15mg) . o f (CH), f i l m w a s o b t a i n e d b y d i s c h a r g i n g i t t h r o u g h a n e x t e r n a l resistor h a v i n g t h e same r e s i s t a n c e a s t h e i n t e r n a l r e s i s t a n c e o f t h e c e l l 1 5 ohms), ( s e e F i g . 7 ) . Measurement o f t h e i n i t i a l c u r r e n t (54mA) g a v e a maximum p o w e r d e n s i t y o f 2. 2 , 9 0 0 W a t t s / K g o n t h e second d i s c h a r g e . A f t e r 1 m i n u t e t h e c u r r e n t w a s 45mA, a f t e r 2 . 5 m i n u t e s i t w a s 24mA a n d a f t e r 5 m i n u t e s i t h a d f a l l e n t o 14mA. Maximum p o w e r d e n s i t y v a l u e s a f t e r o t h e r d i s c h a r g i n g t i m e s a r e given i n Fig. 7 . (z. Rz'LOAD RESISTANCE 1,-CURRENT '0 Fig. 7 - 20 WHEN Ri- RJ 40 60 80 100 120 140 TIME (sec) Maximum p o w e r d e n s i t y c h a r a c t e r i s t i c s o f a (CH),/LiC104, ( T H F ) / L ~c e l l . Curve 1 r e f e r s t o t h e f i r s t discharge; curve 2 r e f e r s to t h e second discharge. A coulombic e f f i c i e n t y o f 99% was o b t a i n e d on r e c h a r g i n g a f t e r the f i r s t discharge. ( 2 ) N e u t r a l (CH), c a t h o d e + n-doped ( C H ) x a n o d e : S i n c e b o t h neut r a l a n d r e d u c e d (CH), h a v e q o o d s t a b i l i t v i n a n e l e c t r o l v t e o f I M LiC104 i n T H F a v o T t a i c c e l l w a s c o n s t P u c t e d u s i n g ( c H ~ a, s t h e c a t h o d e a n d (CH-Y), a s t h e anode. The o v e r a l l d i s c h a r g e r e a c t i o n is: A c e l l o f t h i s t y p e u s i n g 7 % e l e c t r o c h e m i c a l l y r e d u c e d (CHIx f o r t h e a n o d e a n d n e u t r a l (CH), f o r t h e c a t h o d e h a ? a p o t e n t i a l o f 1.OV a n d a s h o r t c i r c u i t c u r r e n t o f 3mA/cm o f (CH),. The c e l l s h o w s e x c e l l e n t s t a b i l i t y o v e r a 4-5 m o n t h p e r i o d . (See I t is f u l l y r e c h a r g e a b l e w i t h coulombic e f f i c i e n c i e s o f F i g . 8). ca. 99%. I t is t h e f i r s t s t a b l e , r e c h a r g e a b l e b a t t e r y d e v e l o p e d i n which b o t h t h e c a t h o d e and anode a c t i v e m a t e r i a l s a r e o r g a n i c polymers. z. z. The p r e s e n t s t u d i e s i n d i c a t e t h a t c e l l s i n v o l v i n g n e u t r a l and/or p a r t l y reduced p o l y a c e t y l e n e have e x c e l l e n t s t a b i l i t y and coulomhic e f f i c i e n c y a n d some t y p e s e x h i b i t i n t e r e s t i n g l y l a r g e e n e r g y a n d power d e n s i t i e s e v e n a t r e l a t i v e l y s m a l l l e v e l s o f r e d u c t i o n o f t h e polyacetylene. JOURNAL DE PHYSIQUE A' io l?b $0 80 !do iho ido* TIME (days) Fig. 8 - Open circuit voltage, Vocl and short circuit curren characteristics of a ( C H ) ~ / L ~ C (TRF)/ ~ O ~ , [ ~ i g (. ~C~ H cell. )I,~ REFERENCES 111 NIGREY, P.J., MACDIARMID, Commun., (1979) 594. [ 2 ] GAU, S.-G., A.G. and HEEGER, A.J., J.C.S. MILLIKEN, J., PRON, A., MACDIARMID, A.G., HEEGER, A.J., J.C.S. Chem.Commun., (1979) 662. Chem. and ACKNOWLEDGMENTS Studies involving aqueous chemistry and electrochemistry were supported by the Office of Naval Research and the Defense Advanced Research Projects Agency (through a grant monitored by O.N.R.). Studies involving polyacetylene batteries were supported by the Department of Energy, Contract No. DE-AC02-81-ER10832. ~ !
© Copyright 2026 Paperzz