Chapter 4.3 ASA, AAS.notebook

Chapter 4.3 ASA, AAS.notebook
December 02, 2013
D.I.R.T.
Are the following triangles congruent? If so, state the CONGRUENCE. Then state the REASON.
A
B
1) GIVEN: m<BAC=m<DCA Code and Label the picture.
AB CD
∫
ABC ___________ by _________________
D
C
D
A
2) GIVEN: AD AB
DC BC
Code and Label the ∫ picture.
ABC ___________ B
by _________________
C
1
Chapter 4.3 ASA, AAS.notebook
December 02, 2013
4.3 Triangle Congruence by ASA and AAS
Objective: To prove two triangles congruent using the ASA Postulate and the AAS Theorem
M.2.B.
Performance Standard 3.4, 3.5 DOK­1
Knowledge MA 3
ASA­ Angle­side­Angle Postulate­­ If 2 angles and one included side are congruent to 2 angles and one included side of another triangle, then the triangles are congruent.
2
Chapter 4.3 ASA, AAS.notebook
December 02, 2013
AAS­ Angle­Angle­Side Postulate­­ If 2 angles and a nonincluded side of one triangle are congruent to 2 angles and a nonincluded side of another triangle, then the triangles are congruent.
3
Chapter 4.3 ASA, AAS.notebook
December 02, 2013
Are the triangles congruent? Justify.
If they are, then write a congruence statement.
1)
J
E
U
JUN ___________ by _________________
N
2)
W
Z
JKZ ___________ by _________________
K
J
H
3)
E
HEG ___________ by _________________
F
G
4
Chapter 4.3 ASA, AAS.notebook
December 02, 2013
S
4) E
SME ___________ by _________________
M
I
L
B
BCD ___________ 5)
by _________________
D
C
A
E
6) D
BDC ___________ A
by _________________
B
C
5
Chapter 4.3 ASA, AAS.notebook
December 02, 2013
Code each picture. Determine why the triangles are congruent. 7) Given: m<LKM = m<JKM, m<LMK = m<JMK
Prove: LKM = K
JKM
WHY? ___________________
L
M
J
P
8) Given: <S=<Q, RP bisects <SRQ
Prove: SRP = QRP
WHY? ___________________
S
Q
R
Worksheet #1
6