ECN Installation

Innovative Offshore Wind Installation Concepts
PO.ID
129
Commercial Proof using ECN Install
M. Asgarpour, A. Dewan, L.B. Savenije
Energy Research Centre of the Netherlands (ECN)
Objective
Offshore Wind Installation
ECN Install
Commercial proof of 3 innovative installation concepts:
2488 offshore turbines are installed by end of 2014
1. Breakwaters
Ambitious plan to install 30 GW more by 2020
2. Offshore assembly site
Installation, 10-15% of CAPEX due to high vessel costs
3. Floating transport
Mark J Kaiser, Brian F Snyder; Offshore Wind Energy Cost Modeling - Installation and Decommissioning; Springer 2012
Statoil.com #Hywind
Acciona.ca
huismanequipment.com
Reference Wind Farm
Installation Planning Results
300 MW, 75x4MW, 2 HVDC
[Hours]
Foundation Installation (2.02 ± 0.57 days)
24
22
North Sea, 85 km offshore
20
18
28-36 m water depth
16
14
12
20 years of weather data
10
8
WS: 7.64 m/s & WH:1.55m
6
4
Google Map s
2
Foundation: Monopile, Transition Piece, J-Tube Set
0
Turbine: Tower (x2), Nacelle, Blade (x3)
[days]
Equipment: Hydro Hammer, Jack-up Barge (x2)
Start
Date
Found. 29-Mar
Working Shift: Loading (12h), Installation (24x7)
Turb.
05-Aug
End
Date
Total
27-Aug
07-Mar
Weather Shift Harbour
Delay Delay Delay
Work
Delay
2.02 ±
0.57
1.45
0.57
±0.57
0.36
±0.51
0.17
±0.05
0.04
2.86 ±
2.09
1.26
1.6
±2.09
1.41
±2.00
0.19
±0.09
0
Innovation: Breakwaters
[days]
Work
Delay
Total
Found.
108
43
151
Turb.
94
120
214
Total
202
163
365
Installation Planning Results
 Breakwater to attenuate waves to an acceptable level
[Days]
Duration of Foundation Installation
2,25
Wind Farm near GodeWind
II Location (40 km)
Wind Farm near Gemini
Location (85 km)
Wind Farm near YM6
Location (30 km)
85km
Start
Date
End
Date
Total
Work
Delay
Ref.
29-Mar
27-Aug
1.95
1.45
0.50
0.36
0.17
40%
29-Mar
3-Aug
1.71
1.45
0.25
0.048
0.206
1,5
60%
29-Mar
1-Aug
1.67
1.45
0.22
0.008
0.211
1,25
80%
29-Mar
1-Aug
1.67
1.45
0.22
0.004
0.215
 Mound, monolithic & composite breakwater structure
2
 Ht/Hi = 0.3 for L/w = 3 & Ht/Hi = 0.9 – 1.0 for L/w = 8
1,75
Weather
Shift Delay
Delay
Pros: less weather restriction, more weather window
1
Cons: structure costs
0,75
0,5
0,25
0
0%
40%
60%
80%
0%
40%
60%
Innovation: Offshore Assembly Site
80%
0%
40%
60%
80%
Installation Planning Results
 Floating pontoon structure as offshore harbour
Duration of Tubrine Installation
[Days]
 Components are assembled together on the platform
 Feeder vessel feeds new components to the platform
Reference Wind Farm
[85km - WH 2m - 5 hrs]
Innovation
[#km - WH 2m - 5 hrs]
Innovation
[85km - WH 2m - # hrs]
Innovation
[85km - WH #m - 5 hrs]
3,25
3
2,75
Ref.
Start
Date
End
Date
Total
Work
Delay
85km
5-Aug
8-Mar
2.86
1.26
1.60
Inno.
Start
Date
End
Date
Total
Work
Delay
85km
5-Aug
4-Sep
0.78
0.69
0.09
Inno.
Start
Date
End
Date
Total
Work
Delay
WH 3m
5-Aug
1-Sep
0.74
0.69
0.05
Inno.
Start
Date
End
Date
Total
Work
Delay
3 hrs
5-Aug
26-Aug
0.67
0.61
0.06
Weather
Shift Delay
Delay
1.41
0.19
2,5
2,25
2
Pros: faster turbine installation
1,75
1,5
Cons: platform costs
1,25
1
0,75
0,5
Weather
Shift Delay
Delay
0.069
Weather
Shift Delay
Delay
0.031
0.038
0
85 km
150 km
35 km
85 km
150 km
1.5 m
2m
2.5 m
Innovation: Floating Transport
3m
3.5 m
3 hrs
5 hrs
7 hrs
9 hrs
Installation Planning Results
 Baseline
Floating Turbine Installation
[Days]
4
3,75
 Spar buoy concept installation
3,5
Baseline
Floating Turbine Installation
Innovation
tug-boats
[Hours]
Innovation
Huisman
12
10
3,25
 Assembly in a fjord, towing offshore and mooring
3
2,75
2,5
 Use tug-boats or Huisman vessel instead
8
2,25
6
4
2
1,75
2
1,5
1,25
Pros: faster turbine installation
1
0,75
0,5
0,25
0
*SS: Single Shift
**SM: Multiple Shift
EWEA Offshore 2015 – Copenhagen – 10-12 March 2015
0
0.033
Weather
Shift Delay
Delay
0,25
35 km
0.024
Baseline Floating Turbine Installation (1.06 ± 0.85 days )
0.038