Lesson 6-6 Objective - To graph linear inequalities in the coordinate plane. Graph y > −2. Graph x ≤ 3. Number Line Coordinate Plane x≤3 Number Line y > −2 x≤3 y -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 Coordinate Plane y > −2 y x x y = -2 x=3 y Graph y ≤ 2 x − 1. 3 Graph y > − x + 3. Boundary Line Boundary Line y = 2 x −1 3 2 b = −1 m= 3 y = −x + 3 m = − 1 = −1 = 1 1 −1 b=3 x Test a Point y ≤ 2 x −1 3 0 ≤ 2 (0) − 1 3 0 ≤ −1 False! Graph 4x + 5y ≥ 10. 4x + 5y ≥ 10 −4x − 4x 5y ≥ −4x + 10 5 5 y ≥ −4 x + 2 5 − 4 m= = 4 5 −5 b=2 If y = mx + b, ≥ Solid line Shade up y If y = mx + b, If y = mx + b, > solid dashed shade up shade down ≥ ≤ x > < y x Dashed line Shade up Graph 3x − 2y > 8. 3x − 2y > 8 −3x − 3x −2y <> −3x + 8 −2 −2 y< 3x−4 2 3 m = = −3 2 −2 b = −4 y If y = mx + b, < Dashed line Shade down Algebra Slide Show: Teaching Made Easy As Pi, by James Wenk © 2010 x Lesson 6-6 (cont.) Graph 4x − 3y ≤ 6. 4x − 3y ≤ 6 −4x − 4x −3y ≥ ≤ −4x + 6 −3 −3 4 y≥ x−2 3 4 m = = −4 3 −3 b = −2 y x Graph 3x < 2y. 3x < 2y 2y > 3x 2 2 y> 3x 2 m = 3 = −3 2 −2 b=0 If y = mx + b, ≥ x If y = mx + b, > Solid line Shade up Write the inequality described by the graph below. b=2 Dashed line Shade up Determine whether the given point is a solution to the inequality -2x + 3y < 9. (x, y) y m=−4 3 −2x + 3y < 9 −2(2) + 3(−3) < 9 −4 + −9 < 9 −13 < 9 1) (2, -3) -4 If y = mx + b, +3 < Dashed line Shade Down y Yes, (2,-3) is a solution. x 2) (3, 5) y<−4x+2 3 Problem If you have less than $5.00 in nickels and dimes, find an inequality and sketch a graph to describe how many of each coin you have. Let n = # of nickels Let d = # of dimes 0.05 n + 0.10 d −2x + 3y < 9 −2(3) + 3(5) < 9 −6 + 15 < 9 9<9 No, (3,5) is not a solution. 5n + 10d < 500 n d d 0 50 60 100 0 50 40 30 < 5.00 or 5 n + 10 d < 500 20 10 0 n 0 10 20 30 40 50 60 70 80 90 100 Algebra Slide Show: Teaching Made Easy As Pi, by James Wenk © 2010
© Copyright 2026 Paperzz