MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. Department: Mechanical Semester: III Subject Code: ME2202 Subject Name: ENGG. THERMODYNAMICS UNIT III 1) A rigid tank of 0.03 m 3 capacity contains wet vapour at 80 kPa. If the wet vapour mass is 12 kg, calculate the heat added and the quality of the mixture when the pressure inside the tank reaches 7 MPa. (AUC DEC’05) Given: Rigid tank Volume (V1) = V2 = 0.03m 3 [rigid tank] Pressure (P1) = 80 Kpa = 80 / 100 KN/ m 2 => 0.8 bar Mass (m) = 12 Kg Pressure (P2) = 7Mpa × 1000 = 7000/100 KN /m 2 = 70 bar To find: a) Heat added (Q) b) Quality of mixture ( X1 & X2) (or) dryness fraction Solution: Step: 1 Specific volume (V) = V1 / m =0.03/ 12 =0.0025 m 3 /Kg Step:2 From steam tables, corresponding to (P 1 =0.8 bar) Read Vf, Vg, hf , hf g [pressure table pg: no: 9] Vf = 0.001039 m 3/kg Vg = 2.0869 m 3 / kg hf = 391.7 KJ /kg hf g = 2274.21 KJ /kg L.VIJAYAKUMAR/A.P-MECH Page 1 Step:3 Specific volume (V) = Vf + x1 Vhf g 0.0025 = 0.001039 + x1 [ 2.0869 – 0.001039] 0.0025 = 0.001039 + x1 (2.0858) 0.0025 - 0.001039 = 2.0858 x1 0.001461 = 2.0858 x1 0.001461/ 2.0858 = x1 x1 = 0.0007 Step :4 for rigid vessel (V1 =V2) V2 = 0.0025 m 3 / kg From steam tables , corresponding to (P2 = 70 bar) [pg:no:13] Vf = 0.001351 m 3/kg hf = 1267.4 KJ /kg Vg = 0.027368 m 3 / kg hf g = 1506.0 KJ /kg Vg > V2 0.027368 > 0.0025 The steam is in wet condition (V2) = Vf 2 + (x2 . Vg2) 0.0025 = 0.001351 + (x2) . [0.027368 – 0.001351] 0.0025 - 0.001351 = (x2) . (0.026017) 0.001149 = x2 . (0.026017) 0.001149 / 0.026017 = x2 x2 = 0.044 (h2) = hf 2 + (x2 . hf g2) (h2) = 1267 .4 + [0.044 × 1506.0] (h2) = 1333.9101 KJ/ kg L.VIJAYAKUMAR/A.P-MECH Page 2 Step:5 By first law of thermodynamics Q = W + ( U) Where W =0 [for rigid vessel] Q= U Total heat transfer (Q) = m [h2 – h1] – V [P2 – P1] (Q) = 12 [1333.9101 – 393.2918] – 0.0025 [7000 – 80] (Q) = 11287.4196 – 17.3 Q = 11270.1196 KJ L.VIJAYAKUMAR/A.P-MECH Page 3 o 2) Steam enters the turbine at 3 MPa and 400 C and is condensed at 10 kPa. Some quantity of steam leaves the turbines at 0.6 MPa and enters open feed water heater. Compute the fraction of the steam extracted per kg of steam and cycle thermal efficiency. (AUC DEC’05) Given: Regenerative rankine cycle Pressure (P1) = 3Mpa × 1000 KN / m 2 = 30 bar 100 Temp (T1) = 400oC Pressure (P2) = 0.6 Mpa × 1000 KN / m 2 = 6 bar 100 Pressure (P3) = 10 Kpa = KN / m 2 = 0.1 bar 100 To find: ή Thermal efficiency ( ) Solution : Step:1 From superheated steam table At P1 = 30 bar and T1 = 4000C S1 = 6.925 KJ /Kg . K [pg.no :22] H1 = 3232 . 5 KJ /Kg . K [pg.no :19] S1 = S2 => 6.925 KJ /Kg . K But at P2= bar => pressure table Sg = 6.758 KJ /Kg . K [pg.no :11] S1 > S2 6.925 > 6.758 so the steam is again in superheated state L.VIJAYAKUMAR/A.P-MECH Page 4 From mollier diagram, corresponding to S2= 6.925 KJ /Kg . K entropy at 6 bar the enthalpy is found H2 = 2630 KJ / Kg Step:2 S1 = S3 => 6.925 KJ/kg.K At P3 = 0.1 bar [pressure table pg.no:07] Vf3 = 0.001010 m 3 /kg hf3 = 191.8 KJ/kg Vg3 = 14.675 m 3 /kg hfg3 = 2392.9 KJ/kg Sf3 = 0.649 KJ/kg.K Sfg3 = 7.502 KJ/kg.K S1 = S3 => Sf3 + (x3 × Sfg3) 6.925 = 0.649 + (x3 × 7.502) 6.925 - 0.649 = 7.502 x3 6.925 - 0.649 /7.502 = x3 x3 = 0.8365 h3 = hf3 + (x3 × hfg3) h3 = 191.8 + (0.8365 × 2392.9) h3 = 2193.6448 KJ/kg h4 = hf3 => 191.8 KJ/Kg h5 - h4 = Vf3 [P2 - P3] h5 - h4 = 0.001010 [600 – 10] h5 - h4 = 0.5959 KJ/Kg h5= 0.5959 + h4 h5= 0.5959 + 191.8 h5= 192.3959 KJ/Kg L.VIJAYAKUMAR/A.P-MECH Page 5 Step:4 Amount of steam bleed M = h6 – h5 / h2 – h5 h6 = hf = 670.4 KJ /Kg => [P2 =6 bar use pg.no:11] M = 670.4 – 192.4 / 2630 – 192.4 M = 0.1960 KJ / Kg of steam Step:5 At 6 bar Vf = 0.001101 m 3 / kg Wp 6-7 = h7 – h6 => Vf 2 [P1 – P2] = 0.001101 [3000 – 600] h7 – h6 = 2.6424 KJ /Kg h7 = 2.6424 + h6 h7 = 2.6424 + 670.4 h7 = 673.0424 KJ /Kg Step:6 Regenerative rankine cycle efficiency ή reg = (h1- h7) – (l – m) (h3- hf 3) (h1- h7) = (3232.5 – 673.0424) – (1 – 0.1960) (2193.6448 – 191.8) 3232.5 – 673.0424 = 2559.4576 – 1609.4832 2559.4576 = 0.3711 × 100 ή reg = 37.11% L.VIJAYAKUMAR/A.P-MECH Page 6 3) 1 kg of steam initially dry saturated at 1.1 MPa expands in a cylinder following the law PV1.13 = C. The pressure at the end of expansion is 0.1MPa. Determine (i) The final volume (ii) Final dryness fraction (iii) Work done (iv) The change in internal energy (v) The heat transferred. (AUC DEC’06) Given: Poly tropic process Mass (m) = 1Kg Pressure (P1) =1.1 Mpa × 1000 => 1100 / 100 KN/m 2 = 11bar “ (P2) =0.1 Mpa × 1000 => 100 / 100 KN/m 2 = 1 bar PV1.13 = C To find: (i) The final volume (V2) (ii) Final dryness fraction (x2) (iii) Work done (W) (iv) The change in internal energy ( (v) The heat transferred (Q) U) Solution: Step:1 From steam table at (P1 = 11 bar) V1 = Vg1 = 0.17739 m 3 / kg H1 = hg1 =2779.7 KJ / Kg = [Pg.no:11] Step:2 Polytropic process V2 = [P1 /P2] 1/n × V1 V2 = [11/1] 1/1.13 x 0.17739 Final volume (V2) = 1.4808 m 3 L.VIJAYAKUMAR/A.P-MECH Page 7 Step:3 From steam table at (P2 = 1 bar) Hf 2 = 417.5 KJ/Kg Vf 2= 0.001043 m 3 / kg Hf g2 = 2257.9 KJ/Kg Vg2 = 1.6938 m 3 / kg Vfg2 = Vg2 - Vf 2 => 1.6938 – 0.001043 Vfg2 = 1.6927 m 3 / kg V2= Vf2 + x2 . Vfg2 1.4808 = 0.001043 + X2 . (1.6927) 1.4808 - 0.001043 = 1.6927 X2 1.4808 - 0.001043 / 1.6927 = X2 Final dryness fraction (X2) = 0.8742 Step:4 Work done (W) = P1 V1 – P2 V2 n-1 = (1100 x 0.17739) –(100 x 1.4808) 1.13 – 1 (W) = 361.9153 KJ Step:5 Change in internal energy ( ( U) = u1 – u2 U) = (h1 – h2) – (P1 V1 – P2 V2 ) Where h2 = hf2 + x2 . hfg2 h2 = 417.5 + (0.8742 x 2257.9) h2 = 2391.3561 KJ/Kg ( U) = (h1 – h2) – (P1 V1 – P2 V2 ) ( U) = (2779.7 – 2391.3561) –(1100 x 0.17739 -100 x 1.4808) ( U) = 388.3438 – 47.049 ( U) = 341.2948 KJ L.VIJAYAKUMAR/A.P-MECH Page 8 Step:6 By first law of thermodynamics Heat transfer (Q) = W + U (Q) = 361.9153 + 341.2948 (Q) = 703.2101 KJ L.VIJAYAKUMAR/A.P-MECH Page 9 4) Steam at a pressure of 2.5 MPa and 500oC is expanded in a steam turbine to a Condenser pressure of 0.05 MPa. Determine for Rankine cycle: (i) The thermal efficiency of Rankine cycle (ii) Specific steam consumption. If the steam pressure is reduced to 1 MPa and the temperature is kept same 500oC.Determine the thermal efficiency and the specific steam consumption. Neglect feed pump work. (AUC DEC’06) Given: Rankine cycle P1 = 2.5Mpa x 1000 = 2500/100 KN / m 2 T1 = Tsup = 5000C P2 = 0.05 Mpa x 1000 = 50 /100 KN/m 2 To find: Case:1 (i) The thermal efficiency of Rankine cycle (ii) Specific steam consumption. Case:2 (i) The thermal efficiency of Rankine cycle (ii) Specific steam consumption. Solution: case:1 Step:1 From super heated steam table at [P1 = 2.5 bar , T1= 5000C] (pg.no:22) H1 = 3462.9 + 3460.6 / 2 H1 = 3461.75 KJ/Kg S1 = 7.344 + 7.305 / 2 S1 = 7.3245 KJ/Kg.K From steam table at (P2 = 0.5 bar) Vf2 = 0.001030 m 3/ Kg Vg2 = 3.2401 m 3/ Kg hf2 = 340.6 KJ/Kg Sf2 = 1.091 KJ/Kg.k hfg2 = 2305.4 KJ/Kg Sfg2 = 6.504 KJ/Kg.k S1 = S2 = Sf2 + X2 Sfg2 L.VIJAYAKUMAR/A.P-MECH Page 10 7.3245 = 1.091 + (6.504 x X2) 7.3245 – 1.091 / 6.504 = X2 X2 = 0.9584 H2 = hf2 + ( X2 hfg2) H2 =340.6 + (0.9584 x 2305.4) H2 = 2550.1188 KJ/Kg Heat supplied (Qs) = h1 – h2 (Qs) = 3461.75 – 340.6 (Qs) = 3121.15 KJ/Kg Work done (W) = h1 – h2 (W) =3461.75 – 2550.1188 (W) = 911.6312 KJ Thermal efficiency rankine = W/Qs = 911.6312 / 3121.15 ήth = 0.2920 x 100 ήth = 29.20 % Specific steam consumption = 3600 / W =3600 / 911.6312 = 3.9489 Kg/Kw .hr Case:2 Step:2 Condition: The steam pressure is reduced to P1 = 1Mpa x 1000 =1000/100 KN /m 2 = 10 bar T1 = 5000C From super heated steam table at P1 = 10bar and T1 = 5000C H1 = 3478.3 KJ/Kg [pg.no:19] S1 = 7.763 KJ/Kg.K [pg.no:22] L.VIJAYAKUMAR/A.P-MECH Page 11 From steam table P1 = 0.5bar Vf2 = 0.001030 m 3 /kg 3 Vg2 = 3.2401 m /kg hf2 = 340.6 KJ/kg Sf2 = 1.091 KJ/Kg.K hfg2 = 2305.4 KJ/kg Sfg2 = 6.504 KJ/Kg.K Sg2 = 7.595 KJ/Kg.K S1 = S2 => 7.763 KJ / Kg.K S2 > Sg2 7.763 > 7.595 => steam is again super heated condition Again from super heated table and [mollier diagram use] Corresponding ( P2 = 0.5 bar and super heated steam 4000C meet) H2 = 3279.0 KJ/Kg [pg.no: -18] Heat supplied (Qs) = h1 – h2 (Qs) = 3478.3 – 340.6 (Qs) = 3137.7 KJ/Kg Work done (W) = h1 – h2 (W) =3478.3 – 3279 (W) = 199.3 KJ Thermal efficiency rankine = W/Qs = 199.3 / 3137.7 ήth = 0.06351 x 100 ήth = 6.35 % Specific steam consumption = 3600 / W =3600 / 199.3 = 18.0623 Kg/Kw .hr L.VIJAYAKUMAR/A.P-MECH Page 12 5) A cyclic steam power plant is to be designed for a steam temperature at turbine inlet of633K and an exhaust pressure of 8 kPa. After isentropic expansion of steam in the turbine, the moisture content at the turbine exhaust is not to exceed 157 o. Determine the greatest allowable steam pressure at the turbine inlet, and calculate the Rankine cycle efficiency for these steam conditions. Estimate also the mean temperature of heat addition.(AUC DEC’07) Solution: Rankine cycle T1 = 633 K After isentropic expansion ( X2) = 85/100 =>0.85 Exhaust pressure (P2) = 8Kpa / 100 =0.08 bar To find: a) Thermal efficiency ( ήth ) b) Mean temp (Tmean) Solution: Step:1 From steam table ( P2 = 0.8 bar) [pg.no:07] Sf2 = 0.593 KJ/Kg.K Vf2 = 0.001008 m 3 /kg hf2 = 173.9 KJ/Kg Sfg2 = 7.637 KJ/Kg.K Vg2 =18.105 m 3 /kg hfg2 = 2403.2 KJ/Kg Sg2 = 8.230 KJ/Kg.K hg2 = 2577.1 KJ/Kg S2 = Sf2 + (x2 Sfg2) S2 = 0.593 + (0.25 x 7.637) S2 = 7.0844 KJ/Kg.K h2 = hf2 + (x2 hfg2) h2 =173.9 + (0.85 x 2403.2) h2 = 2216.62 KJ/Kg S1 = S2 = 7.0844 KJ/Kg.K L.VIJAYAKUMAR/A.P-MECH Page 13 S1 = 7.0844 => compare steam table [Pg.no: -22] 6.960 – 7.130 KJ/Kg.K Select 20 bar H1 = 3138.6 + 3248.7 / 2 => at 20 bar [pg.no:20] H1 = 3193.65 KJ/Kg H3 = hf2 => 173.9 KJ/Kg pump work (Wp) = Vf2 ( P1 – P2) (P1 = 20 bar x 100 = 2000 KN /m 2) (Wp) = 0.001008 (2000 – 8) (Wp) = 2.0079 KJ/Kg heat supplied (Qs) = h1 (hf2 + Wp) (Qs) = 3193.65 – (173.9 + 2.0079) (Qs) = 3017.7421 KJ/Kg work done (W) = (h1 – h2) – Wp (W) = (3193.65 – 2216.62) (W) = 975 .0221 KJ/Kg Thermal efficiency = W/Qs = 975 .0221 / 3017.7421 ήth = 0.3230 x 100 ήth = 32.30 % Mean temp of heat addition (Tmean) = h1 – h3 / s 1 – s 3 = 3193.65 – 173.9 / 7.0844 – 0.593 (Tmean) = 465 K L.VIJAYAKUMAR/A.P-MECH Page 14 6) 3 kg of steam at 18 bar occupy a volume of 0.2550 m 3. During a constant volume process, the heat rejected is 1320 kJ. Determine final internal energy. Find dryness fraction and pressure, change in entropy and work done. (AUC MAY’08) Given: Constant volume process V1 = 0.2550 m 3 P1 = 18 bar x 100 = 1800 KN / m 2 M1 = 3 kg Heat rejected (Q) =1320 KJ To find: a) Internal energy (u2) b) Initial dryness fraction (X) c) Work done (W) Solution: Step:1 Specific volume (V1 ) = V / m = 0.2550 / 3 (V1 ) = 0.085 m 3 / kg Step:2 From steam table , corresponding to 18 bar Vf1 = 0.00168 m 3 / kg hf1 = 884.5 KJ/kg Vg1 = 0.11033 m 3 / kg hfg1 = 1910.3 KJ/Kg Sf1 = 2.398 KJ/Kg.K Sfg1 = 3.977 KJ/Kg.k V1 = X1 x Vg1 0.085 = X1 x 0.11033 0.085 / 0.11033 = X1 X1 = 0.7704 H1 = hf1 + (X1 hfg1) H1 = 884.5 + (0.7704 x 1910.3) H1 = 2356.2257 KJ/kg.K L.VIJAYAKUMAR/A.P-MECH Page 15 S1 = Sf1 + (X1 Sfg1) S1 = 2.398 + (0.7704 x 3.977) S1 = 5.4618 KJ/Kg.k Step:3 For closed vessel (V1 = V2) For constant volume process (W) = 0 By first law of thermodynamics Q=W+ u Where Q = u2 – u1 Q = m (u2 – (n1 – P1 V1)) 1320 = 3 (u2 – (2356.2257 – (1800 x 0.085)) 1320 / 3 = u2 – 2203.2257 440 = u2 – 2203.2257 440 + 2203.2257 = u2 u2 = 2643.2257 KJ/Kg L.VIJAYAKUMAR/A.P-MECH Page 16 7) A steam power plant runs on a single regenerative heating process. The s team enters the turbine at 30 bar and 400oC and steam fraction is withdrawn at 5 bar. The remaining steam exhausts at 0.10 bar to the condenser. Calculate the efficiency, steam fraction and steam rate of the power plant. Neglect pumps work. (AUC MAY’08) Given: Single regenerative heating process P1 = 30 bar T1 = 4000C With draw pressure (P2 ) = 5 bar Exhaust pressure to the condenser (P3 ) = 0.1 bar To find: a) Efficiency b) Steam fraction c) Steam rate of the power plant Solution: Step:1 At 30 bar and T1 =4000C => from super heated steam table H1 =3232.5 KJ/Kg S1 = 6.925 KJ/Kg.K P2 = 5 bar => from pressure table [pg.no:10] Tsat = 151.80C hf2 =640.1 KJ/kg 3 Vf2 = 0.001093 m / kg hfg2 = 2107.4 KJ/kg Vg2 = 0.37466 m 3 / kg hg2 = 2747.5 KJ/kg Sf2 =1.860 KJ/kg.K Sfg2 = 4.959 KJ/kg.K Sg2 = 6.819 KJ/kg.K P3 = 0.1 bar => from pressure table [pg.no:07] Tsat = 45.830C Sf3 =0.649 KJ/kg.K Hf3 =191.8 KJ/kg Sfg3 = 7.052 KJ/kg.K Hfg3 = 2392.9 KJ/kg Sg3 = 8.151 KJ/kg.K Hg3 =2584.7 KJ/kg L.VIJAYAKUMAR/A.P-MECH Page 17 Step:2 1 – 2 => isentropic expansion S1 = S2 = 6.925 KJ/kg.K S2 > Sg2 => at 5 bar 6.925 > 6.819 So, steam is at super heat condition At 5 bar and S2 = 6.925 KJ /Kg.K Use mollier diagram => interaction point P2 = 5 bar => T= 1700 C :. H2 = 2794 KJ/Kg Step :3 3 – 2 Isentropic expansion S2 = S3 = 6.925 KJ/Kg.K S3 < Sg3 6.925 < 8.151 KJ/kg => at P3 = 0.1 bar :. Steam is wet condition :. S3 = Sf3 + (X3 . Sfg3) 6.925 = 0.649 + (X3 . 7.502) 6.925 – 0.649 / 7.502 = X3 X3 = 0.8365 H3 = hf3 + ( X3 . hfg3) H3 = 191.8 + (0.8365 x 2392.9) H3 = 2193.6448 H4 =hf3 H4 = 191.8 KJ/kg Step:5 Mass of steam bled (m) M= hf2 – hf4 / h2 – h4 => 640.1 – 191.8/ 2794 – 191.8 M= 0.1722 KJ/kg of steam Work done by the turbine with generation (W reg) W reg = (h1 – h2) + ( l – m) (h2 – h3 ) L.VIJAYAKUMAR/A.P-MECH Page 18 W reg = (3232.5 – 2794) + (1 – 0.1722) (2794 – 2193.64) W reg = 935.4740 KJ/Kg Efficiency of cycle with regeneration ( ( ή reg ( ή reg ( ή reg ή ) reg ) = W / h1 – h2 = (935.4740 / 3232.5 – 640.1) x 100 ) = 0.3608 x 100 ) = 36.08% Steam rate with regeneration SSCreg = 3600 / W REG = 3600 / 935.4740 = 3.8483 Kg/Kw - hr L.VIJAYAKUMAR/A.P-MECH Page 19 8) Ten kg of water at 45oC is heated at a constant pressure of 10 bar until it becomes Superheated vapour at 300oC. Find the changes in volume, enthalpy, internal energy (AUC DEC’09) and entropy. Given: Constant pressure process Mass (m) =10 kg (T1) = 450C (P1) = (P2) = 10 bar x 100 => 1000 Kpa (T2) = 300oC To find: a) V => change in volume b) H => change in enthalpy c) U => change in internal energy d) S => change in entropy Solution: Step:1 From steam table at T1 = 450C [use temp table] (pg.no:02) Vf = V1 = 0.001010 m 3 / kg Sf = S1 = 0.638 KJ/Kg.K Hf = h1 = 188.4 KJ /Kg Step:2 From steam table P2 = 10 bar and T2 = 3000C Use super heated steam table V2 = 0.2580 m 3 / kg [pg.no:16] H2 = 3052.1 KJ/Kg [pg.no:19] S2 = 7.125 KJ/Kg.K [pg.no:22] L.VIJAYAKUMAR/A.P-MECH Page 20 Step:3 Change in volume ( V) = m (V2 – V1) = 10 (0.258 – 0.001008) ( V) = 2.57 m 3 Change in enthalpy ( H) = m(h2 – h1) = 10 (3052.1 – 188.4) ( H) = 28637 KJ Change in internal energy ( u) = m [(h2 – h1) + P2 (V2 –V1)] ( u) = 10 [(3052.1 – 188.4) + 1000 (0.258 – 0.001008)] ( u) = 31206.92 KJ Change in entropy ( s) = m(S2 – S1) = 10 (7.125 – 0.638) ( s) = 64.87 KJ/Kg.K L.VIJAYAKUMAR/A.P-MECH Page 21 9) A steam power plant running on rankine cycle has steam entering H P turbine at 20 Mpa, 5000C and leaving L P turbine at 90% dryness. Considering condenser pressure of 0.005Mpa and reheating occurring upto the temp of 5000C Determine a) The pressure at which steam leaves H P turbine b) The thermal efficiency c) Work done (AUC MAY 2011) Given: Rankine cycle H.P turbine P1 = 20 Mpa => 200 bar T1 = 5000C L.P turbine Dryness (X4) = 0.9 Condenser pressure (P3) = 0.005 Mpa (P3) = 0.05 bar To find: a) The pressure at which steam leaves H P turbine (P2) b) The thermal efficiency c) Work done (W) Solution: Step:1 P1 = 200 bar & T1 = 5000C => from super heated steam table H1 = 3241.1 KJ/Kg [pg.no:20] S1 = 6.146 KJ / Kg.K [pg.no:23] P4 = 0.05 bar => from pressure table Vf4 = 0.001005 m 3 /kg 3 Vg4 = 28.194 m /kg hf4 = 137.8 KJ/Kg Sf4 = 0.476 KJ/Kg.K hfg4 = 2423.8 KJ/Kg Sfg4 =7.920KJ/Kg.K L.VIJAYAKUMAR/A.P-MECH Page 22 H4 = hf4 + (X4 x hfg4) H4 = 137.8 + (0.9 x 2423.8) H4 = 2319.22 KJ/Kg S4 = Sf4 + (X4 x Sfg4) S4 = 0.476 + (0.9 x 7.920) S4 = 7.604 KJ/Kg.K S1 =S2 = 6.146 KJ/Kg.K S4 =S3 = 7.604 KJ/Kg.K S3 =7.604 KJ/Kg.K & T = 5000C => use super heated steam table P2 = 14 bar [pg.no:22] H3 = 3473.9 KJ/Kg H5 = hf4 H5 = 137.8 KJ/Kg P2 = 14 bar => use pressure steam table Hf2 = 830.1 KJ/Kg Sf2 = 2.284 KJ/Kg.K Hfg2 = 1957.7 KJ/Kg Sfg2 = 4.181 KJ/Kg.K Hg2 = 2787.8 KJ/Kg Sg2 = 6.465 KJ/Kg.K S2 = Sf2 + (X2 . Sfg2) 6.146 = 2.284 + ( X2 . 4.181) 6.146 – 2.284/4.181 = X2 X2 = 0.92 H2 = hf2 + (X2 x hfg2) H2 = 830.1 + (0.92 x 1957) H2 = 2631.184 KJ/Kg H6 = hf4 + Vf4 (P1 – P2) H6 = 137.8 + 0.001005 (20x1000 – 0.005 x1000) H6 = 157.8949 KJ/Kg L.VIJAYAKUMAR/A.P-MECH Page 23 ( ή rankine ) = (h1 – h2) + (h3 – h4) – (h6 – h5) / (h1 – h6) + (h3 – h2) = (3241.1 – 2631.184) + (3473.9 – 2319.22) – (107.8949 -137.8) (3241.1 – 2631.184) + (3473.9 – 2613.184) = 609.916 + 1154.68 – 20.0949 3083.2051 + 842.716 = 1744.5011 3925.9211 = 0.4443 x 100 ( ή rankine ) = 44.43% Work done by the pump (W p) = Vf4 (P1 –P2) = 0.001005 (20000 – 1400) (W p) = 18.693 KJ/Kg L.VIJAYAKUMAR/A.P-MECH Page 24 10) A rankine cycle works between 40 bar and 0.2 bar with saturated steam at turbine inlet determine cycle efficiency and the ratio of pump work and turbine work [AUC DEC 11] Given: Rankine cycle P1 = 40 bar x 100 = 4000 KN/m 2 P2 = 0.2 bar x 100 = 20 KN/m 2 To find: a) Cycle efficiency b) The ratio of pump work and turbine work Solution: Step:1 From steam tables, at 40 bar H1 = hg1 = 2800.3 KJ/Kg Sg1 = S1 = 6.069 KJ/Kg.K Step:2 From steam tables at 0.2 bar Vf2 = 0.0010107 m 3 / kg Vg2 = 7.6498 m 3 / kg hf 2 = 251.5 KJ/kg sf2 = 0.832 KJ/Kg.K hfg 2 = 2358.4 KJ/kg sfg2 = 7.077 KJ/Kg.K hg 2 = 2609.9 KJ/kg sg2 = 7.909 KJ/Kg.K Step:3 Pump work (Wp) = Vf2 (P1 –P2) (Wp) = 0.001017 (4000 – 20) (Wp) = 4.0476 KJ/Kg L.VIJAYAKUMAR/A.P-MECH Page 25 Step:4 Turbine work (W T ) = h1 – h2 Where H2 = ? S1 = S2 => 6.069 KJ/Kg.K S1 = S2 + (X2 . Sfg2) 6.069 = 0.832 + (X2 . 7.077) 6.069 – 0.832 / 7.077 = X2 0.7399 = X2 H2 = hf2 + (X2 . hfg2) note: P2 = bar use mollier diagram h2 = 251.5 + (0.7399 x 2358.4) h2 = 2010 KJ/Kg h2 = 1996.48016 KJ/Kg Turbine work (W T) = h1 – h2 (W T) = (2800.3 – 2010) (W T) = 790.3 Kw The ratio of pump work and turbine work = Wp / W T = 4.0476 / 790.3= 0.005 Cycle efficiency ( ήrank) = W net / Q1 W net = W T – Wp (W T) = 790.3 – 4.0476 (W T) = 786.2524 Q1 = h1 – h4 Where Hf2 = h3 => h3 = 251.5 KJ/kg Wp = h4 – h3 :. H4 = 4.0476 + 251.5 H4 = 255.476 KJ/kg Q1 = h1 – h4 => 2800.3 – 255.476 Q1 = 2544.7524 KJ ή cy cle = W net / Q1 = 786.2524 / 2544.7524 ή cy cle = 0.3089 x 100=30.89% L.VIJAYAKUMAR/A.P-MECH Page 26 11) One kg of steam at 10 bar exists at the following condition (i) wet and 0.8 dry (ii) dry and saturated (iii) at a temp of 199.90 C . determine the enthalpy, specific volume , density , internal energy and entropy in each case take Cps = 2.25 KJ/kg (AUC JUNE 2012) Given: P1 = 10 bar x 100 = 1000 KN/m 2 X = 0.8 T= 199.90 C Cps = 2.25 KJ/kg To find: Enthalpy (h) specific volume (V) density (P) internal energy entropy Solution: Step:1 From steam table (P1) = 10 bar Ts = 179.90C hf = 762.6 KJ/Kg sf=2.138 KJ/Kg.K Vf = 0.001127 m 3/kg hfg = 2013.6 KJ/Kg Vg = 0.19430 m 3/kg hg = 2776.2 KJ/Kg sfg=4.445 KJ/Kg.K sfg=6.583 KJ/Kg.K Condition: When steam is 0.8 bar H1 = hf1 + (x . hfg) H1 = 762.6 + (0.8 x 2013.6) H1 = 2373.48 KJ/Kg L.VIJAYAKUMAR/A.P-MECH Page 27 V1 = X . Vg1 V1 = 0.8 x 0.19430 V1 = 0.15544 m 3 / kg ρ = 1 / V1 = 1/ 0.15544 ρ = 6.4333 Kg/m 3 U = h1 – P x V1 U = 2373.48 – (1000 x 0.15544) U = 2218.08 KJ/Kg S=Sf1 + (X1 x Sfg1) S= 2.138 + (0.8 x 4.445) S=5.694 KJ/Kg.K Condition:2 When steam is dry and saturated Hg1 = h H = 2776.2 KJ/kg Vg1 = V1 Vg1 = 0.19430 m 3 / kg ρ = 1 / V1 = 1/0.19430 ρ = 5.1466 Kg/m 3 U = h – P1V1 U = 2776.2 – (1000 x 0.19430) U = 2581.9 KJ/Kg S1 = Sg1 S1 = 6.583 KJ/Kg.K L.VIJAYAKUMAR/A.P-MECH Page 28 Condition:3 When steam is superheated H= hg1 + Cp (T – Ts) = 2776.2 + 2.25 (199.9 – 179.9) H= 2821.2 KJ/Kg V1 = Vg1 (T+ 273 / Ts + 273) =0.19430 (199.9 + 273 / 179.9 + 273) V1 = 0.2028 m 3 / Kg U = h –P1V1 U= 2821.2 – (1000 x 0.2028) U= 2618.3197 KJ/Kg S = Sg1 + CPs ln (T+ 273 / Ts + 273) S = 6.583 + 2.25 ln (427.9 / 452.9) S = 6.6802 KJ/Kg.K L.VIJAYAKUMAR/A.P-MECH Page 29 12) In a steam generator compressed liquid water at 10 Mpa , 300C enters a 30mm dia tube at the rate of 3 lit/sec, steam at 9 Mpa, 4000C exists the tube. Find the rate of heat transfer to the water [AUC JUNE 2012] Given: P1 = 10 Mpa x 10 = 100 bar Temp of water (Tw) = 300C Dia (D) = 30mm / 1000 => 0.03 (V1) =3 / 1000 = 0.003 m 3/sec P2 = 9Mpa x 10 => 90 bar Ttube (T2) = 4000C To find: Rate of heat transfer to the water (Q) Solution: Step:1 From steam table corresponding to 300C V1 = Vf1 = 0.001004 m 3 / kg Hf1 = h1 = 125.7 KJ/Kg Step:2 Mass flow rate of steam (m) M = V / Vf1 = 0.003 / 0.001004 M= 2.9880 Kg/s Step:3 Area of tube (A) (A) = /4 x d2 => /4x (0.03)2 (A) = 7.0685 x 10-4 m 2 Step:4 Inlet velocity (C1) L.VIJAYAKUMAR/A.P-MECH Page 30 C1 = m x V1 / A = 2.9880 x 0.001004 / 7.0685 x 10-4 m 2 C1 = 4.2440 m/s Step:5 From steam tables corresponding to P2 = 9 bar and T2 = 4000C V2 = 0.02993 m 3/Kg H2 = 3121.2 KJ/Kg Step:6 Final velocity C2 = m x V2 /A = 2.9880 x 0.02993 / 7.0685 x 10-4 C2 = 126.5202 m/s Step:7 M h1 + C12 / 2000 + Z1 g + Q = m h2 + C22 / 2000 + Z2 g +W M h1 + C12 / 2000 +Q = m h2 + C22 / 2000 2.9880 125.7 + (4.2440)2 / 2000 +Q = 2.9880 3121.2 + 126.5202 / 2000 375.6185 + Q = 9350.0606 Q = 9350.0606 – 375.6185 Q = 8974.4418 KJ/sec L.VIJAYAKUMAR/A.P-MECH Page 31 13) A steam turbine receive steam at pressure 20 bar superheated at 300 0C the exhaust pressure 0.07 bar and expansion taken place isentropic calculated (i) heat rejected (ii) heat supplied (iii) work done (iv) thermal efficiency [AUC JUNE 2013] Given: Isentropic process – rankine cycle (P1) = 20 bar x 100 = 2000 KN/m 2 (T1) = 3000C + 273 = 573K (P2) = 0.07 bar x 100 = 7 KN/m 2 To find: a) heat supplied (Q) b) heat rejected (Qr) c) work done (W) d) thermal efficiency ( ήther) Solution: Step:1 From super heated steam table at P1 = 20 bar and T1 = 3000C H1 = 3025.0 KJ/Kg => [pg.no:19] S1 = 6.770 KJ/Kg.K => [pg.no:22] Step:2 From steam table P2 = 0.07 bar => [pg.no:07] Vf2 = 0.001007 m 3 /kg 3 Vg2 = 20.531 m /kg hf2 = 163.4 KJ/Kg Sf2 = 0.559 KJ/Kg.K hfg2 = 2409.2 KJ/Kg Sfg2 =7.718 KJ/Kg.K hg2 = 2572.6 KJ/Kg Sg2 =8.277 KJ/Kg.K Step:3 S1 = S2 S2 = Sf2 + ( X2 x Sfg2) 6.770 = 0.559 + (X2 x 7.718) 6.770 – 0.559 / 7.718 = X2 L.VIJAYAKUMAR/A.P-MECH Page 32 X2 = 0.8047 H2 = hf2 + (X2 . hfg2) H2 = 163.4 + (0.8047 x 2409.2) H2 = 2102.1848 KJ/Kg Step;4 Work done (Wp) = Vf2 (P1 – P2) Wp = 0.001007 (2000- 7) Wp = 2.0069 KJ/Kg Step:5 Heat supplied (Qs) = h1 - (hf2 + Wp) (Qs) = 3025.0 – (163.4 + 2.0069) (Qs) = 2859.5931 Kg/KJ Step:6 Heat rejected (Q R ) = h2 –hf2 (or) h2 – h3 (QR ) =2102.1848 – 163.4 (QR ) = 1938.7848 Kg/KJ Step:7 Work done (W) = Qs - QR (W) = 2859.5931 – 1938.7840 (W) = 920.8084 KJ/Kg Step:8 Thermal efficiency ( ήthermal) = W/Qs = 920.8084 / 2859.5931 = 0.3220 x 100 ( ήthermal) = 32.20% Step:9 Specific steam consumption = 3600 / W => 3600 / 920.8084 = 3.9096 Kg/Kw - h L.VIJAYAKUMAR/A.P-MECH Page 33
© Copyright 2026 Paperzz