Lecture 2 - Nichol Group

Fabrication and measurement of
quantum nanostructures
9/6/2016 Fabrication
9/8/2016 2D electron systems.
Ihn, chapter 2, chapter 6
1. Ihn chapter 9
2. A new method for highaccuracy determination of the
fine-structure constant baed
on quantized Hall resistance 1. JMN
2D electron systems,
9/13/2016 cont'd.
Ihn, chapter 16
9/15/2016
1.Two-Dimensional
Magnetotransport in the
Extreme Quantum Limit
2. Coherent branched flow in
a two-dimensional electron
gas
1.
Last time…
β€’ Effective mass in GaAs: π‘šπ‘š = 0.07 π‘šπ‘šπ‘’π‘’
β€’ Fermi wavevector in GaAs: π‘˜π‘˜πΉπΉ = 1.58 ×
106 π‘π‘π‘šπ‘šβˆ’2
β€’ πœ†πœ†πΉπΉ β‰ˆ 40 𝑛𝑛𝑛𝑛
β€’
Δ𝐸𝐸
π‘˜π‘˜π΅π΅ 𝑇𝑇
β‰ˆ 120 𝐾𝐾
β€’ Quantum nanostructures must be
 clean
 small
 cold
β€’ 2D is special.
Today
β€’ Making 2D electron systems:
– semiconductor band engineering
β€’ Making 0D and 1D systems out of 2D systems.
– Gating
– Nanofab
β€’ Measuring quantum nanostructures:
– Low temperature measurements
– Transport measurements
Band engineering
E
Large gap
Small gap
Large gap
Conduction band
(empty states)
z
Valence band
(filled with electrons)
z
Layered semiconductor structures can be used to confined
electrons and holes
Band engineering
http://people.seas.harvard.edu/~jones/ap216/images/
bandgap_engineering/bandgap_engineering.html
Band engineering
β€’ Band gap in GaAs: 1.424 eV
β€’ Band Gap in AlxGa1-xAs
www.ioffe.ru
www.ioffe.ru
Band gap of AlxGa1-xAs increases with
Al content
AlGaAs-GaAs-AlGaAs quantum well
Vacuum levels (electron affinity) aligned
Conduction band
(empty states)
E
Valence band
(filled with electrons)
AlGaAs
GaAs
AlGaAs
Quantum well for electrons and holes
z
AlGaAs-GaAs heterostructure
E
z
AlGaAs-GaAs heterostructure
E
EF
z
AlGaAs-GaAs heterostructure
E
EF
z
AlGaAs-GaAs heterostructure
E
EF
z
AlGaAs-GaAs heterostructure
E
EF
z
Negative gate voltage
E
EF
z
Si-MOS
Metal
SiO2
Si
z
Si MOS structure
E
gate
SiO2
Si
EF
z
Si MOS structure
E
gate
SiO2
Si
EF
z
What happens if we apply a positive
gate voltage?
E
gate
SiO2
Si
EF
z
Si MOS structure
E
EF
gate
SiO2
Si
bias
z
Si MOS transistor
Where do the electrons come from?
Gate: 0V
channel
source
gate
SiO2
drain
Si
Where do the electrons come from?
Gate: +1V
channel
source
gate
SiO2
bias
drain
Si
Making 1D or 0D systems
Beenaker and van Houten
Hendrik Bluhm
Molecular beam epitaxy
wikipedia
Molecular beam epitaxy
Chris Palmstrom, UCSB
Other deposition/growth techniques
Oxidation
Integral-storage.com
Hivactec.com
wikipedia
Carbon systems
Graphene-supermarket
www.graphene.ac.rs
Quantum nanostructures must be
 clean
 small
 cold
Photolithography
Deposit metal
metal
metal
metal
wikipedia
Photolithography
Dissolve PR
metal
wikipedia
wikipedia
Electron beam lithography
Raith
Purdue
Quantum nanostructures must be
 clean
 small
 cold
Low-temperature physics
Gas
Boiling point (K)
Methane
111.7
Oxygen
90.2
Argon
87.2
Flourine
85.2
Air
78.8
Nitrogen
77.4
Neon
27
Hydrogen
20.2
He-4
4.2
He-3
3.2
wikipedia
Low-temperature physics
Dangerous
Expensive
Gas
Boiling point (K)
Methane
111.7
Oxygen
90.2
Argon
87.2
Flourine
85.2
Air
78.8
Nitrogen
77.4
Neon
27
Hydrogen
20.2
He-4
4.2
He-3
3.2
wikipedia
Pumping on cryogenic fluids
Pumped He-4 fridge: 1.2 K
Pumped He-3 fridge: 600 mK
wikipedia
Dilution refrigerator
Janis
Dilution refrigerator: 10 mK
wikipedia
High magnetic fields
wikipedia
Transport measurements
`
4 terminal measurements
wikipedia
NIST
Next time
β€’ Electrical transport
β€’ Quantum Hall effect
β€’ Journal club presentation by JMN