25.09.12 Clouds, Precipitation and their Remote Sensing Prof. Susanne Crewell AG Integrated Remote Sensing Institute for Geophysics and Meteorology University of Cologne Susanne Crewell, Kompaktkurs, Jülich September 2012 24.25September 2012 Intergovernmental Panel on Climate Change (IPCC) www.ipcc.ch Nobel price 2007 IPCC Fourth Assessment Report (FAR), 2007: "Warming of the climate system is unequivocal", and "Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations". Aerosols, clouds and their interaction with climate is still the most uncertain area of climate change and require multidisciplinary coordinated research efforts. Susanne S Sus sann ann a ne Crewell, Crew Crew rewell ewe elllll,, Kompaktkurs, Komp ompakt a kur akt kurs, s, Jül Jü Jülich ü ich c 25 ch 25 Se S September epte tembe te tembe mb ber 2 2012 012 1 1 25.09.12 Why are clouds so complex? Cloud microphysical processes occur on small spatial scales and need to be parametrized in atmospheric models Cloud microphysics is strongly connected to other sub-grid scale processes (turbulence, radiation) Cloud droplets 0.01 mm diameter 100-1000 per cm3 Drizzle droplets 0.1 mm diameter 1 per cm3 Condensation nuclei 0.001 mm diameter 1000 per cm3 Rain drops ca. 1 mm diameter, 1 drops per liter Susanne sa a Crewell, Kompaktkurs, Jülich 25 September 2012 Why are clouds so complex? From hydrometeors to single clouds to Einzelwolken and cloud fields to the global system Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 2 25.09.12 What are important cloud parameter? Macro-physical Parameter Radiative Quantities cloud fraction extinction coefficient ε [m-1] cloud height optical thickness τ cloud contours τλ = 3D-structure z=∞ ∫ε λ (z') d z' z=0 transmission t = exp(-τ) Micro-physical Parameter Ice- and mixed phase clouds number concentration N effective radius reff liquid water content LWC radar reflectivity Z moments of the droplet spectrum phase shape density Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Droplet spectra Hawaii orographic observations modelling Hawaii stratus Passat moments of drop spectra ∞ m(n) = ∫ r n N (r)dr 0 Australia continental cloud liquid water density [kg m-3] LWC = 4π ∞ 3 ρ w ∫ r N (r)dr 0 3 Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 3 25.09.12 Ice and mixed phase clouds Bergeron-Findeisen While everywhere sufficient cloud condensation nuclei for forming water droplets are available, much fewer ice nuclei exist Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 From small to large particles .... 0.1 μm aerosols 1.0 μm 10 μm cloud droplets ice crystals 100 μm 1.0 mm rain drops 10 mm snow turbulence microphysical models ~100 m numerical weather prediction (NWP) models ~10 km Susanne Crewell, Jülich 25 September 2012 climate models ~100Kompaktkurs, km 4 25.09.12 Jülich ObservatorY for Cloud Evolution • JOYCE aims at investigating the processes of cloud formation and cloud evolution (precipitation) • Various instruments set up at the Research Centre Jülich continuously monitor winds, temperature, water vapor, clouds, and precipitation over many years geomet.uni-koeln.de/joyce Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 JOYCE: Scientific goals Goals to disentangle water vapor variations due to advection and to local surface influence validate coupled models to better understand the development of boundary layer clouds including cloud radiation interaction to observe precipitation formation and improve parametrization schemes Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 5 25.09.12 JOYCE: Instrumente (24/7) Scanning cloud radar MIRA-36s Micro Rain Radar Lidar Ceilometer Pulsed Doppler Lidar Scanning MWR HATPRO Infrared spectrometer AERI Doppler Sodar Total sky imager Sun photometer Radiation sensors Auxilliary instruments: 120-m meteorological mast, MAX-DOAS, GPS, polarimetric weather radar Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 How to remotely sense cloud parameters? Active and passive techniques in different spectral regions use extinktion, absorption and scattering of electromagnetic radiation to indirectly sense cloud properties Clouds are best „visible“ in atmospheric windows Microwaves (radiometry, radar & GNSS) Thermal infrared (satellite radiometry and spectrometry) Visible (reflected sun light, lidar, sun photometer) Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 6 25.09.12 How to determine cloud occurrence? Total Sky Imager (Yes Inc.) Specifications: Camera looks from above on spherical mirror Sun is blocked by black tape on mirror Temporal resolution 20 s Products & retrievals: Cloud classification based on RGB components for each pixel (in-house algorithm): sky, thin- and opaque clouds (blue, light blue and white) Cloud fraction Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Total Sky Imager Advantages: very reliable, intuitive, spatio-temporal structure Disadvantage: difficult to interprete due to geometry effects 18 UTC 12 UTC 10 1 0 JJune une 2 011 2011 06 UTC N E S W Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 7 25.09.12 At which height do clouds occur? Lidar Ceilometer CT25K Specifications: pulses at 905 nm temporal resolution 15 s range resolution ~15m, range 0-7 km Products & retrievals: senitive to small particles cloud base height optical extinction assuming constant lidar ratio (in-house algorithm) aerosol layer height Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Lidar ceilometer Altitude (m above ground) Advantages: very reliable, vertical structure Disadvantage: does not penetrate liquid water (cloud!) Ice clouds Rising PBL Rain Aerosol Fog Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 8 25.09.12 Remote sensing and sensor synergy Lidar - backscatter coefficient prop. r2 - depolarisation information (phase!) - strong extinktion by water clouds Cloud radar Radar Lidar - radar reflectivity factor ∫D 6 Radar N (D)dD - Doppler-spectrum - linear depolarisation ratio LDR Lidar Height Z= LWC -liquid water content - influence by insects and drizzle Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Cloud radar Sends (active!) out pulses of microwave radiation Measures backscattered radiation (Z @ 35 GHz) Time between emitted and received pulse information on the distance to backscatterer Cloud radar @ JOYCE Sensitive towards cloud droplets, ice particles & precipitation Doppler radar radial velocity component can be measured Doppler spectrum can help to distinguish different targets Polarized receiver target discrimination constraint information on particle shape Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 9 25.09.12 Cloud radar radar reflectivity factor 7.8.2001 13:30 - 14:30 95 GHz GKSS cloud radar MIRACLE Doppler velocity Lineare depolarisation ratio backscatter proportional r6 Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Doppler Cloud Radar MIRA-36 Elevation scan from 90° to 15° Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 10 25.09.12 Sensor Synergy: target categorization Bit0: small liquid cloud drops (SCD) Bit1: falling hydrometeors Bit2: wet-bulb temperature < 0°C Bit3: melting ice Bit4: aerosol Bit5: insects Only mean to derive complex vertical structure of multi-level, multi-phase clouds Provides assumptions for radiative transfer and retrieval algorithms Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Why is cloud liquid water so important? Liquid water path (LWP) 2007 2012 observations Jiang et al, 2012 Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 11 25.09.12 MicroWave Radiometer (MWR) HATPRO TOPHAT: Measures thermal emission of atmospheric gases and liquid water Brightness temperatures (TB) in 14 channels measurements Azimuth and elevation scanning Complete hemispheric scans during 7 min Products: Temperature and humidity profiles Integrated Water Vapor (IWV) Liquid Water Path (LWP) Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Microwave radiometry Standard atmosphere temperature profile water vapour profile liquid water path liquid water path LWP=250 gm-2 scattering at cloud droplets is negligle in microwave spectral region extinction ≈l absorption α TB = TB cos exp(−τ ) + ∫ ∞ 0 s T (s) α (s) exp(− ∫ α (s')ds') ds 0 Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 12 25.09.12 Cloud radar and microwave Interruption for scanning radar reflectivity factor doppler velocity But how to get the liquid water content profile ? spectral width Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 The inverse problem Remote sensing instruments measure indirect information, e.g. the measurement vector y includes radiances TB at different frequencies Forward problem (radiative transfer) for a given atmospheric state x (temperature, humidity, cloud parameter) is well constrained y = F(x) Microwave spectrum Atmosperic profile Inverse problem (retrieval algorithm), i.e. the determination of the atmospheric state is often ill-conditioned and requires the inclusion of empirical information Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 13 25.09.12 Integrated Profiling Technique a variational approach towards multiinstrument retrieval measurement 1 + error measurement 2 + error atmospheric state: temperature, humidity, hydrometeors + errors measurement 3 + error Inversion a priori information + error OPTIMAL ESTIMATION Löhnert et al., 2004 and 2008 Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Liqud Water Content (LWC) Application of LWC retrieved by IPT for evaluating regional climate models Models show different liquid water paths and different peak altitudes Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 14 25.09.12 Further developments in synergy • Combination of ground-based and satellite information spatial representation of supersites • Development of a “quasi-real-time” variational algorithm based on optimal estimation theory Meteosat Seviri RSW TBIR Z Cloud radar TBMW TBIR MRW IRR IIR Integration & minimization Profiles Pro of cost of function T, q, LW LWC, reff AERI Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 Challenges in sensor synergy Goall: synchroneous scans radar – microwave radiometer Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 15 25.09.12 Summary and conclusions Clouds clouds have a strong effect on the Earths energy and water budget cloud processes are rather complex and involve scales from nm to km cloud feedbacks related to aerosols and changes in temperature and humidty are not well understood Observations better observations of clouds are urgently required sensor synergy observations and modelling need to be linked closely for further progress Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 How to sense the various cloud parameters? Macro-physical Parameter Radiative Quantities cloud fraction extinction coefficient ε [m-1] cloud height optical thickness τ cloud contours 3D-structure τλ = z =∞ ∫ ε λ ( z' ) d z' z =0 transmission t = exp(-τ) Micro-physical Parameter number concentration N effective radius reff liquid water content LWC radar reflectivity Z Ice- and mixed phase clouds phase shape density Susanne Crewell, Kompaktkurs, Jülich 25 September 2012 16
© Copyright 2026 Paperzz