Stability and bonding in the ground and excited states of lithium fluoride Lin F clusters Somnath Bhowmick, Denis Hagebaum-Reignier, Gwang-Hi Jeung Chimie ThéOrique et Modèles (CTOM), Institut des Sciences Moléculaires de Marseille, France GdR Correl meeting, Marseilles 8 july 2015 S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 1 / 14 Outline Hyperlithiated clusters Insertion mechanism and bonding in Li2 F/F− Low-lying states of Lin F clusters Concluding remarks S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 2 / 14 Hyperlithiated clusters Hyperlithiated clusters Li3 O, Li4 O, Li5 O first observed in the gas phase (1980’s) "Are CLi6 , NLi5 , OLi4 ...hypervalent ?" (Schleyer, 1983) ⇒ Hyperlithiated ALin molecules : A− in a metallic Li+ n cage S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 3 / 14 Hyperlithiated clusters Hyperlithiated clusters Li3 O, Li4 O, Li5 O first observed in the gas phase (1980’s) "Are CLi6 , NLi5 , OLi4 ...hypervalent ?" (Schleyer, 1983) ⇒ Hyperlithiated ALin molecules : A− in a metallic Li+ n cage Hyperlithiated clusters are "superalkalis" (Boldyrev et al., 1982) ⇒ very low I.Ps (' 4.0 eV) << I.P of Li atom (5.4 eV) Building blocks for novel materials with unique properties (magnetism, non-linear optics . . . ) S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 3 / 14 Lithium fluoride clusters Motivations Experimental evidence of Lin F clusters with n = 2 − 6 (2000’s) Model for the study of adsorption on a metallic surface : role of excited states ? → Covalent and ionic interactions are expected along the reaction path ⇒ multireference methods (CASSCF, MRCI-F12) Li2 + F → Li2 F : possible candidate for ultracold temperature reactions (Lane et al., 2010). Insertion mechanism ? Li2 + F− → Li2 F− ? no study so far S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 4 / 14 Li2 +F potential energy curves 4.0 Energy (eV) 2.0 r=2.67Å Li2(3Πu) + F F/F- Li2( Σu ) + F 3 0.0 + Li2(X Σg ) + F 1 + −2.0 Z R Qeff on F −4.0 3 2A1 2 2A1 1 2A1 −6.0 0.5 Li Li r X 0.0 −0.5 −1.0 Qeff = 1 2 3 4 5 6 R (Å) 7 8 9 10 µz R CAS(7,8)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 5 / 14 Y Li2 +F potential energy curves 4.0 Energy (eV) 2.0 r=2.67Å Li2(3Πu) + F F/F- Li2( Σu ) + F 3 0.0 + Li2(X Σg ) + F 1 + −2.0 Z R Qeff on F −4.0 3 2A1 2 2A1 1 2A1 −6.0 0.5 Li Li r X 0.0 −0.5 −1.0 Qeff = 1 2 3 4 5 6 R (Å) 7 8 9 10 µz R CAS(7,8)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 5 / 14 Y Li2 +F potential energy curves 4.0 Li2 ( Σg ) + F Li2(3Πu) + F + 2 Energy (eV) 2.0 + − r=2.67Å IP−EA Li2( Σu ) + F 3 0.0 + F/F- Li2(X Σg ) + F 1 + −2.0 Z R Qeff on F −4.0 3 2A1 2 2A1 1 2A1 −6.0 0.5 Li Li r X 0.0 −0.5 −1.0 Qeff = 1 2 3 4 5 6 R (Å) 7 8 9 10 µz R CAS(7,8)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 5 / 14 Y Li2 +F potential energy curves 4.0 Li2 ( Σg ) + F + 2 Energy (eV) 2.0 + − r=2.67Å F/F- 0.0 −2.0 Z R Qeff on F −4.0 3 2A1 2 2A1 1 2A1 −6.0 0.5 Li Li r X 0.0 −0.5 −1.0 Qeff = 1 2 3 4 5 6 R (Å) 7 8 9 10 µz R CAS(7,8)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 5 / 14 Y Li2 +F potential energy curves 4.0 Li2 ( Σg ) + F Li2+(2Σu+) + F− + 2 Energy (eV) 2.0 + r=2.67Å F/F- 0.0 −2.0 Z R 2 1 3 2 1 −4.0 Qeff on F − −6.0 0.5 2 B2 B2 A1 2 A1 2 A1 2 2 Li Li r X 0.0 −0.5 −1.0 Qeff = 1 2 3 4 5 6 R (Å) 7 8 9 10 µz R CAS(7,8)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 5 / 14 Y Li2 +F potential energy curves 4.0 Li2+(2Πu) + F− Li2 ( Σg ) + F Li2+(2Σu+) + F− + 2 Energy (eV) 2.0 + r=2.67Å F/F- 0.0 −2.0 2 1 2 1 3 2 1 −4.0 Qeff on F − −6.0 0.5 Z R 2 B1 B1 2 B2 2 B2 2 A1 2 A1 2 A1 2 Li Li r X 0.0 −0.5 −1.0 Qeff = 1 2 3 4 5 6 R (Å) 7 8 9 10 µz R CAS(7,8)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 5 / 14 Y Li2 +F− potential energy curves 2.0 Energy (eV) 1.0 Li2( Σu ) + F 3 + − r=2.67Å F/F- 0.0 Li2(X1Σg+) + F− −1.0 Z R −2.0 Qeff on F −3.0 Li Li 1 3A1 1 1A1 −4.0 0.5 r X 0.0 −0.5 −1.0 Qeff = 0 1 2 3 4 5 R (Å) 6 7 8 9 10 µz R CAS(8,9)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 6 / 14 Y Li2 +F− potential energy curves 2.0 Energy (eV) 1.0 Li2( Σu ) + F 3 − r=2.67Å F/F- 0.0 Li2(X1Σg+) + F− −1.0 Z R −2.0 1 1 1 1 −3.0 Qeff on F + −4.0 0.5 3 B2 B2 A1 1 A1 1 Li Li 3 r X 0.0 −0.5 −1.0 Qeff = 0 1 2 3 4 5 R (Å) 6 7 8 9 10 µz R CAS(8,9)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 6 / 14 Y Li2 +F− potential energy curves 2.0 Energy (eV) 1.0 Li2( Σu ) + F 3 − r=2.67Å F/F- 0.0 Li2(X1Σg+) + F− −1.0 Z R −2.0 1 1 1 1 1 −3.0 Qeff on F + −4.0 0.5 3 B1 B2 B2 3 A1 1 A1 3 1 Li Li r X 0.0 −0.5 −1.0 Qeff = 0 1 2 3 4 5 R (Å) 6 7 8 9 10 µz R CAS(8,9)/MRCI-F12, AVTZ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 6 / 14 Y Bond analysis of the low-lying states of Li2 F− 4 The ground state is linear, the excited states are bent 4 The triplet states are mono-configurational, the singlets are multi-configurational Li2 F− C2v 1 1 3 + Σ+ g ≈ Σu A1 ↑↓ 13 A1 B2 ↑ or ↑↓ 3 11 B2 ↑ ↑ and and ↑ ↑ and ↓ ⇒ 3c/4e− σ̂ type "long bonding" a as in Li−Be−Li : a. C. Landis & F. Weinhold, Inorg. Chem. 52, 2013, 5154 S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 7 / 14 Low-lying states of Lin F Choice of clusters and method clusters The Lin clusters correspond to a (100) plane of the bcc crystal (r=3.51Å ) The Lin F/F− clusters have a C2v symmetry Method : CAS(n+5,11)/MRCI, AVTZ − ECP for n = 8 Bridge and on-top adsorption sites n= 4 5 6t 6b 8 bcc bcc on-top bridge bridge S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 8 / 14 Low-lying states of Lin F Lin F− potential energy curves clusters Li4 F− Li8 F− 1.5 Energy (eV) Energy (eV) 1.5 1.0 0.5 1.0 0.5 A2 B1 B2 A1 0.0 0.0 0.5 1.0 A2 B1 B2 A1 0.0 1.5 z (Å) S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung −2.0 −1.5 −1.0 −0.5 0.0 z (Å) 0.5 GdR Correl, Marseilles − 8 july 2015 1.0 1.5 9 / 14 Low-lying states of Lin F clusters Vertical excitation energies Lin F− Vertical excitation energy (eV) Lin F 1 A2 B2 B1 A1 1 0.5 A2 B2 B1 A1 0.5 0 0 0 2 4 5 6t 6b 8 0 2 Cluster size n n= 2 4 5 6t 6b 8 Cluster size n 4 5 S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung 6t 6b 8 GdR Correl, Marseilles − 8 july 2015 10 / 14 Low-lying states of Lin F clusters Stabilization energies Lin F clusters are more stabilized than Lin F− clusters Bridge positions are favoured The second layer is stabilizing LinF- clusters LinF clusters -2 Stabilization energy (eV) Stabilization energy (eV) -2 -3 A2 B2 B1 A1 -4 -5 -6 -7 -3 A2 B2 B1 A1 -4 -5 -6 -7 0 2 4 5 6t 6b 8 Cluster size n S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung 0 2 4 5 6t 6b 8 Cluster size n GdR Correl, Marseilles − 8 july 2015 11 / 14 Concluding remarks 4 Lithium fluoride clusters display charge-transfer properties, covalent/ionic interactions 4 Correlated ab initio methods are needed to properly describe their dissociation 4 Ground and excited states of Li2 F and Li2 F− display unusual electronic structures 4 Existence of low-lying states (< 0.5 eV above the GS) in Lin F clusters 4 Strong stabilization of the Lin F clusters S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 12 / 14 Future work Bonding and dipole moment analysis of Lin F clusters The computation of the excited states on bigger Lin F (n > 10) clusters is ongoing Computation of first ionization (neutral) and detachment (anionic) energies → superalkalis Valence-Bond description of the excited states of the small complexes → projection method developped in our group (J. Racine & S. Humbel) S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 13 / 14 Aknowledgments Somnath Bhowmick (PhD) Julien Racine (PhD) Paola Nava Yannick Carissan Jean-Marc Mattalia Gwang-Hi Jeung Stéphane Humbel S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 14 / 14 Optimized states of Li2 F and Li2 F− Li2 F− Li2 F r1 = 2.67 Å (free Li2 ) r2 = 3.51 Å (crystal) S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 15 / 14 Bond analysis of the low-lying states of Li2 F 4 The low-lying states are mono-configurational 4 The ground state is bent, the excited states are linear X̃ 2 A1 12 A1 Li2 F C2v ↑ 2 + Σu 12 B2 ↑ S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung 2 Πu 12 B1 ↑ 22 A1 ↑ GdR Correl, Marseilles − 8 july 2015 16 / 14 Li2 F potential energy surfaces 12A1 state (Ground state) 22A1 state 10 10 1 1 0.5 0 8 8 0 6 −2 0.4 −3 0 4 −0.8 −1.6 −0.5 R (Å) R (Å) −1 6 −1 −1.5 4 −2 0.4 −2.5 −4 −2.4 2 −4 −4.8 0.8 2 −3.2 −5 −6.0 −3.2 −1.6 −2.4 −3 0 −3.5 −4.0 0 0 −6 2 2.5 3 3.5 4 4.5 5 −4 2 2.5 F/F- r (Å) 3 3.5 4 4.5 5 r (Å) Z R Li Li Y r X S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 17 / 14 Li2 F potential energy surfaces 12B1 state 12B2 state 10 10 1 1 0.5 0 8 8 0 0 −1 −1 0.4 −1.5 4 −2 R (Å) R (Å) −0.5 6 6 0 0.8 −2 −3 4 0.4 −2.5 0 2 0 −2.8 −2.4 −0.4 0.8 −4.0 −4 −0.8 2 −3 −2 −5 −3.2 −4 −4.8 −3.5 −5.2 0 0 −4 2 2.5 3 3.5 4 4.5 5 −6 2 2.5 F/F- r (Å) 3 3.5 4 4.5 5 r (Å) Z R Li Li Y r X S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 17 / 14 Li2 F− potential energy surfaces 11A1 state (Ground state) 13B2 state 10 1 10 0 8 1 0.5 8 0.6 0 6 −1 0.4 0.2 4 −2 0 R (Å) R (Å) −0.5 6 −1 1 −1.5 0.6 4 −2 0.2 −0.2 −0.4 2 −3.2 −2.5 −1.4 2 −3 −2.8 −2.4 −3.4 −3 −3.8 0 −4 2 2.5 3 3.5 −2.2 −3.5 −4.0 0 −3 −2.6 4 4.5 5 −4 2 2.5 F/F- r (Å) 3 3.5 4 4.5 5 r (Å) Z R Li Li Y r X S. Bhowmick, D. Hagebaum-Reignier, G.-H. Jeung GdR Correl, Marseilles − 8 july 2015 18 / 14
© Copyright 2025 Paperzz