Electrochemistry Basics - electrochemical cells & ion transport - electrochemical potential - half-cell reactions Lithium Ion Batteries (LiBs) - battery materials - application of batteries - “post-LiBs” Fuel Cell Basics & Applications - fuel cell types and materials - basic electrocatalysis - H2 reduction & O2 reduction kinetics - transport resistances 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 64 Principle of Fuel Cells Direct electrochemical conversion of chemical energy into electrical energy: “spatial separation” of oxidation and reduction on electrocatalysts, e.g.: H2 2 H+ + 2eanode (oxidation): cathode (reduction): 0.5 O2 + 2 H+ + 2e- H2O overall reaction: H2 + 0.5 O2 H2O e- e- load simplest configuration: catalysts to enable half-cell reactions (electronically conducting) ion-conducting electrolyte (electronically non-conducting) 2e Pt effective three-phase interface (reactant, ion-conductor, catalyst) H2 2H+ ½ O2 2e- Pt H2O H2 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt H2SO4 - O2 p. 65 Fuel Cell Types generally distinguished by type of electrolyte and conducting ion: fuel cell type temp. anode reaction SOFC 1000°C H2 + O H2O + 2e 650°C (Solid Oxide FC) MCFC ( Molten Carbonate FC) PAFC ( Phosphoric Acid FC) PEMFC + ( H Exchange Membrane FC) DMFC ( Direct Methanol FC) AFC ( Alkaline FC) conducting ion cathode reaction O-2 (Y-stabilized ZrO2) ½ O2 + 2e- O-2 H2 + CO3 H2O + CO2 + 2e CO3-2 (alkali carbonates) ½ O2 + CO2 + 2e CO3 200°C H2 2H+ + 2e- H (H3PO4) ½ O2 + 2H+ + 2e- H2O 80°C H2 2H+ + 2e- H+ (solid polymer) ½ O2 + 2H+ + 2e- H2O 80°C CH3OH + H2O CO2 + 6H+ + 6e- H (solid polymer) 1.5 O2 + 6H+ + 6e- 3H2O 80°C H2 + 2OH 2H2O + 2e OH(KOH) ½ O2 + H2O + 2e 2OH -2 - -2 - - + - + - - high-temperature fuel cells (SOFC, MCFC): temperature required to obtain sufficient electrolyte conductivity ability to oxidize CO and to use CH4 reactant via internal reforming low/medium-temperature fuel cells: temperature maximum dictated by H2O-loss (no conductivity without H2O) require clean H2: CO-tolerance of 1% for PAFC and <<100ppm for others; CO2-free O2/air for AFCs (carbonate formation: pH change, precipitation) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 66 -2 - H2 for Fuel Cells H2 supply for fuel cell systems: - stationary systems: - reforming of CH4 (natural gas), petroleum, gasoline - automotive systems: - on-board reforming of methanol (CH3OH), gasoline (avg. molar composition CH1.5), or Diesel fuel (avg. molar composition CH2) - stored H2 (liquid, high-pressure, chemical hydride) - portable systems: - direct electrooxidation of methanol (DMFC) energy (storage) density of various fuels: kWh/kg kWh/l H2 tank systems *) based on the density of liquefied gas (from: P. Piela and P. Zelenay, Fuel Cell Review 1 (2004) 17) practical H2 storage densities liquid hydrocarbons made on-board hydrocarbon reforming in cars attractive 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt (from: A. Bouza et al., DOE Annual Hydrogen Program Review (2004)) p. 67 H2-Fuel Cell Electric Vehicles (FCEVs) GM H2-FC (2008): 500 km (70 MPa H2) meets vehicle range target refueling in < 5 minutes catalyst cost & supply (100kW car): currently: 0.5 gPt/kW 50gPt/car at $50/gPt-as-catalyst $25/kW ($50/kWFC-system target) long-term: <0.1gPt/kW <10gPt/car with current automotive Pt use: >15 million cars/year catalyst durability: 1500 hours*) vs. 6000 hour target carbon-support corrosion & Pt-dissolution advanced catalysts & controls advanced catalysts required: *) DOE ultra-high activity Pt catalysts or non-Pt catalysts test fleet data: K. Wipke, S. Sprik, J. Kurtz, J. Garbak, in: Handbook of Fuel Cells (eds.: W. Vielstich, H.A. Gasteiger, H. Yokokawa), Wiley (2009): vol. 6, pp. 893. 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 68 Thermodynamic Fuel Cell Efficiency fuel energy content released by combustion: Wheat = DHR for H2 + 0.5 O2 H2O : DHR = DHfH2O – [DHfH2 + 0.5DHfO2 ] (enthalpies of formation from thermodynamic tables) at 25°C, pH2 =pO2 = 101.3 kPaabs: DHRH2O(liquid) = -285.8 kJ/mol – [0 kJ/mol + 0 kJ/mol) ] = -285.8 kJ/mol DHRH2O(101.3kPa vapor) = -241.8 kJ/mol – [0 kJ/mol + 0 kJ/mol) ] = -241.8 kJ/mol Wheat produced depends on the state of water: DHRH2O(liquid) = -285.8 kJ/mol Higher Heating Value (HHV) DHR(101kPa vapor) = -241.8 kJ/mol Lower Heating Value (LHV) thermodynamic fuel cell efficiency (usually based on HHV): th = DGRH2O(liquid/vapor)/DHRH2O(liquid) = -DGRH2O(liquid/vapor)/285.8 kJ/mol for a H2/O2 fuel cell at 25°C and pH2 = pO2 = 101 kPa producing H2O(liquid) : th = 237.1 kJ/mol / 285.8 kJ/mol = 83.05% 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 69 Dependence of th on Different Fuels Gibbs-Helmholtz relation: DGR(T) = DHR(T) - TDSR(T) if DSR < 0 (decrease of number of moles): th = 1 - TDSR(T)/DHR(T) <100% Wheat,rev = -TDSR(T) is released (applies for most fuel cell reactions) (W. Vielstich, in: Handbook of Fuel Cells (eds.: W. Vielstich, A. Lamm, H.A. Gasteiger), Wiley (2003): vol. 1, chapter 4, p. 26) th for most fuel cell reactions ranges from 80 to 100% 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 70 Overall Efficiency of Fuel Cells in actual fuel cells: Ecell << Erev due to resistive, kinetic, and mass-transport losses H2/air (s=2/2) at 80C, 100%RH, E150kPa th(HHV) abs voltage = Ecell/Erev = (i) 1.4 Eth(HHV) DHR(H2O liquid)/(2F) = 1.48 V 1.2 Ecell [V] to evaluate Wheat formation, it is convenient to define a thermal-equivalent voltage, Eth : Eth(LHV) Eth(LHV) DHR(H2O vapor)/(2F) = 1.25 V Erev 1.0 Wheat(H2O liquid) 0.8 Wheat(H2O vapor) Ecell 0.6 0.4 Welectrical 0.2 FC = th voltage = Ecell/Eth(HHV) = Ecell/1.48V 0.0 0 0.5 1 1.5 2 i [A/cm ] heat formation in actual fuel cells: if water is produced in liquid form: Wheat = i (Eth(HHV) – Ecell ) if water is produced in vapor form: Wheat = i (Eth(LHV) – Ecell ) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt the ratio of Wheat/Welectric as i heat rejection requirement increases with power density p. 71 Proton Exchange Membrane Fuel Cell Materials 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 72 H2/Air PEMFC Performance Model Ecell = Erev – iRW(RH) – hHOR – | hORR | – iRH+,an&ca (RH) – htx,O2(dry) – htx,O2(wet) Erev : thermodynamic voltage RW : RW-membrane(RH) + RW-el purely Ohmic resistances hHOR , hORR : H2 oxidation and O2 reduction kinetic losses RH+,an&ca(RH) : electrode H+-conduction resistance h tx,O2 : O2 diffusion through H2O-free DM at <100% local relative humidty (RH) htx,O2(wet) : additional O2 diffusion loss in H2O-filled pores (>100%RH) determine performance gaps via quantification of each term 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 73 PEMFC Stack Single-Cell Repeating Units Bipolar Plate (BP) e--conducting plates H2 & air distribution via flow-fields Diffusion Media (DM) gas diffusion layer channel-to-land distribution (gas, e-) 1-2 mm Membrane Electrode Assembly MEA: electrodes on H+-conducting PEM Diffusion Media (DM) Bipolar Plate (BP) 20-40 cm full-size PEMFC stacks: - 100’s of single cells - MEA active areas of 200 to 800 cm2 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 74 Single Cell Assembly & Diffusion Medium Structure M.F. Mathias et al., in: Handbook of Fuel Cells; Wiley, v.3 (2003) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 75 Proton (H+) Exchange Membrane ionomeric membranes for PEMFCs (25 mm) and DMFCs (100 mm) - H+-donating sulfonic acid groups –SO3 & organic/aqueous phase-segregation - hydrophobic backbone C.K. Mittelsteadt & H. Liu, in: Handbook of Fuel Cells: Fund., Techn. & Appl. (eds: W. Vielstich, H.A. Gasteiger, H. Yokokawa), Wiley (2009): vol. 5. from: K.D. Kreuer, in: Handbook of Fuel Cells: Fundamentals, Technology & Applications (eds: W. Vielstich, A. Lamm, H.A. Gasteiger), Wiley (2003): vol. 3. RH+(membrane) & RH+(electrodes) are strong functions of RH 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 76 Sulfonic Acid Ionomers – l vs. RH 10 Sulfuric Acid water-uptake of various sulfonic acid ionomers at 80°C: Crosslinked 4% DVB Dowex 50 (Pushpa) 9 BPSH 40% (McGrath) GES Measurement 700 EW PFSA 8 up to 80%RH: same l vs. RH for very different ionomers at >80%RH (high l): l-value now strongly depends on ionomer l nH2O/n-SO3H Nafion 112 sulfonated-nonsulfonated multi-block 7 6 5 4 3 2 from: C. Mittelsteadt & H. Liu, in: Handbook of Fuel Cells (eds.: W. Vielstich, H.A. Gasteiger, H. Yokokawa), Wiley (2009): vol. 5, p. 345. 1 0 0 20 40 60 80 100 Relative Humidity % Dowex 50: ion-exchange resin made of 4% cross-linked polystyrene divinyl benzene. BPSH 40: 2 mil 40% randomly sulfonated biphenol sulfone provided by James McGrath, Virginia Tech. 700 EW PFSA: 1 mil membrane with similar structure to Nafion. Nafion 112 : 2 mil extruded membrane. PAEK triblock: 1 mil triblock polyaryl ether ketone with a sulfonated middle block from PolyMaterials, Germany. 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 77 Catalyst Carbon-Supports primary agglomerate Typical Pt/C Catalyst: two primary functions: - high surface area to support catalyst nanoparticles (e.g., Pt) - high-structure material, creating highly porous electrodes high “structure” of primary carbon agglomerates leads to highly porous packing primary agglomerates cannot be “broken” by typical shears/pressures primary C-particles (20-40nm) agglomerates breakage occures during carbon corrosion SEM picture: Jim Mitchell, Ted Gacek, and Mike Budinski (GM Fuel Cell Activities) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 78 PEFC Electrode Composition & Structure C / Pt / ionomer 1 / 1 / 1 mass-ratio morphology via high-structure carbon-blacks from: Z.Y. Liu, B.K. Brady, R.N. Carter, B. Litteer, M. Budinski, J. Electrochem. Soc. 155 (2008) B979. 46% Pt/carbon 40 nm 60% void volume & dpore 50-100nm membrane Diffusion Medium H+ O2 eO2 + 4H+ + 4e- Pt 2H2O 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt ionomer-film model consistent with SEM & AC-impedance data p. 79 Pt Dispersion: m2/gPt, roughness factor, ... face-centered cubic structure (fcc) of Pt: 1 Pt atom at each cube corner & face center (100) surface (“number 5”): 1.28·1015 atoms/cm2 = 2.13·10-9 mol/cm2 = 205mC/cm2 (110) surface (“number 6”): 0.92·1015 atoms/cm2 = 1.53·10-9 mol/cm2 = 147mC/cm2 (111) surface (“hexagonal”): 1.5·1015 atoms/cm2 = 2.49·10-9 mol/cm2 = 240mC/cm2 average: 197mC/cm2 commonly used for polycrystalline Pt: 210mC/cm2 (note: 210mC/cm2Pt = 2.04 nmolPt/cm2Pt 235m2Pt/gPt using MPt =195.7 gPt/molPt) (100)-face (110)-face (111)-face Coulombs from cyclic voltammetry divided by 210mC/cm2 : cm2Pt surface specific surface area: cm2Pt/gPt m2/gPt - from 30-120m2/gPt for Pt/C (catalyst property) roughness factor: 0.4mgPt/cm2MEA · 60m2Pt/gPt = 240cm2Pt/cm2MEA 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 80 Pt and Pt-Alloys on Carbon-Supports supported Pt crystallites: cubo-octahedra: PtMo/C m2/gPt vs. dPt for spherical geometry approximation: m2/gPt 6/(dPt rPt) figures courtesy Lawrence Berkeley Lab. (P. Ross, N. Marković) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 81 Catalyst Characterization: In-Situ Surface Area H2 2H+ + 2e- RDE Pt-Had Pt + H+ + e- Catalysts Nafionfilm In-situ cathode CV's at 20mV/s and 25°C: 20 ~1µm MEA: H2(500sccm) / N2 (62sccm); both overhumidified RDE: N2 (1000sccm) in 0.1M HClO4 Glassy-Carbon (RDE) Pt + H2O PtOHad + H+ + e- ~6mm 0 MEA -20 thin-film GC in 0.1M HClO4 50cm2 MEA w. 63 sccm N2 -30 H2, Counter/ Reference Electrodes PtOHad + H+ + e- Pt + H2O -10 N2, Working Electrode i [ A/g Pt ] 10 Pt + H+ + e- Pt-Had -40 0.0 0.2 0.4 0.6 0.8 1.0 1.2 E/V [RHE] 2H+ + 2e- H2 • • • H-adsorption/desorption on RDE (13mgPt/cm2) or in MEA (0.4mgPt/cm2): “H-titration” of Pt State-of-the-art 47%wt Pt/HSC (TKK): 92/79m2/gPt (RDE/MEA) vs. 235 m2/gPt theoretical limit H-adsorption/desorption is independent of H2 partial pressure, H2-evolution is not 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 82 Electrochemistry Basics - electrochemical cells & ion transport - electrochemical potential - half-cell reactions Lithium Ion Batteries (LiBs) - battery materials - application of batteries - “post-LiBs” Fuel Cell Basics & Applications - fuel cell types and materials - basic electrocatalysis - H2 reduction & O2 reduction kinetics - transport resistances 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 83 Kinetics vs. Thermodynamics deviation from thermodynamics when drawing a current kinetic and ohmic limits for PEMFCs: Erev 1.18V for H2/O2 at 101kPa & 80C EPEMFC = Ecathode - DEohmic - Eanode Erev 1.2 1.1 hcathode 1.0 0.9 Ecathode E [V] 0.8 assumptions: - pure H2/O2 at 101 kPaabs & 80C - 0.4 mgPt/cm2 on cathode (60 m2/gPt) - 0.1 mgPt/cm2 on anode (60 m2/gPt) - 25mm membrane with 0.1 S/cm - contact resistance of 0.03 Wcm2 - no mass-transport resistances DEohmic 0.7 0.6 0.5 0.4 significant kinetic losses for the ORR major scientific challenge! 0.3 0.2 0.1 Eanode 0.0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 i [A/cm2MEA] 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 84 Electrocatalysis heterogeneously catalyzed electrochemical reactions are a complex sequence of possibly many steps: adsorption of reactants, desorption of products, solvation, etc. in this sequence of processes, the rate-determining steps (rds) may be different on different electrocatalyts nRR ; Erev(O/R) noO + ne- 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 85 Electrokinetics the Butler-Volmer equation is generally used to describe the overpotential, temperature, and reactant concentration dependence of the current of an electrode reaction *) : nRR ; Erev(O/R) noO + ne- definition according to [2, 3]: (used throughout these slides) with: i0(T,cO,cR) [A/cm2real]: c F Ra TF h h R T i i0(T ,cO ,c R ) rf e e ianodic ( > 0 ) icathodic ( < 0 ) exchange current density, a kinetic reaction rate constant, which depends on the specific electrocatalyst (note: i = i0 at h = 0) rf [cm2real/cm2electrode]: electrode roughness factor, relating the real surface area of the catalyst (e.g., BET, etc.) to the electrode’s geometric area a, c [dimensionless]: anodic/cathodic transfer coefficients, describe the energy barrier symmetry and the numberelectrons in the rds (a,c = 0.5 2.5 [2]) other constants: F is the Faraday constant (96485 As/mol), T is temperature [K], and R is the gas constant (8.314 J/mol/K) derivations/details, e.g.: [1] A.J. Bard & L.R. Faulkner, Electrochemical Methods, John Wiley & Sons (1980); [2] J. O’M. Bockris & A.K.N. Reddy, Modern Electrochemistry, Plenum Press: (1970); [3] J.S. Newman, Electrochemical Systems, Prentice Hall (1991). *) for 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 86 Variants of the Butler-Volmer Equation often the Butler-Volmer equation is written in log10 form : a F c F h h 2.303 R T 2.303 R T i i0(T ,cO ,c R ) rf 10 10 where: ba,c 2.303 R T a ,c F i rf 0 ( T , cO , c R ) h 10 ba 10 h bc is referred to as the anodic/cathodic Tafel slope, representing the overpotential increase required for a 10x increase in current at 25°C, b commonly ranges from 120 mV/decade (a,c = 0.5) to 30 mV/decade (a,c = 2) alternative definition acc. to [1]: n F h (1 R)T n F h R T i i0(T ,cO ,c R ) rf e e here, is also referred to as transfer coefficient, even though its meaning is different from the definitions in [2] and [3] (actually, in [1], the symmetry factor is meant! ...detailed explanation of differences: E. Gileadi, Electrode Kinetics...VCH) care must be taken to not mix up these two different definitions the more general definition with a,c as transfer coefficients will be used here [1] A.J. Bard & L.R. Faulkner, Electrochemical Methods, John Wiley & Sons (1980); [2] J. O’M. Bockris & A.K.N. Reddy, Modern Electrochemistry, Plenum Press: (1970); [3] J.S. Newman, Electrochemical Systems, Prentice Hall (1991). 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 87 Dependence of i0 on the Electrocatalyst exchange current densities vary by many order of magnitudes for different electrocatalysts e.g., for the H2 evolution reaction (2H+ + 2e- H2 ) in acid electrolytes: Pt Rh Au Cu Re Ir Ni Co Fe W Sn Zn Pb Tl Bi Ag Ga Cd Mo Nb Ti Ta from: S. Trasatti, J. Electroanal. Chem. 39 (1972) 163 according to Sabatier’s Principle, high reaction rates (i0’s) require bonding of the reaction intermediate (M-H) which is not too weak and not too strong 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 88 Temperature and Concentration Dependence of i0 as any rate constant of a chemical reaction, the exchange current density depends on temperature and reactant/products concentrations it is frequently based on the definition used in [3]: i0(T ,cO ,cR ) i0(T * ,c* ,c* O with: i 0(T * ,cO* ,c *R ) R cR ) * cR g d E act cO * e R T cO [A/cm2real]: exchange current density at defined reference temperature and reference reactant/product (c*R , c*O ) concentrations g, d [dimensionless]: reaction orders, describing the concentration dependence of i0 Eact [J/mol]: activation energy of the exchange current density [1] A.J. Bard & L.R. Faulkner, Electrochemical Methods, John Wiley & Sons (1980); [2] J. O’M. Bockris & A.K.N. Reddy, Modern Electrochemistry, Plenum Press: (1970); [3] J.S. Newman, Electrochemical Systems, Prentice Hall (1991). 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 89 Characteristics of the Butler-Volmer Reaction the Butler-Volmer equation is the summation of anodic and cathodic currents; this is shown for the example of the HOR/HER kinetics on low-index Pt single crystals: (0.05M H2SO4 at 60°C) (100) 0.76 44 (111) 0.83 66 (Markovic et al., J. Phys. Chem. B 101 (1997) 5405)) inet i0(T ,cO ,c R ) rf 10 ba h ianodic at h =0: 10 h bc icathodic ianodic = icathodic = i0(T,H2, H+) dynamic equilibrium at h +ba/2: ianodic 10 icathodic reverse reaction negligible 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt where rf = 1 for flame-annealed Pt(hkl) single crystals 8 current density [ mA/cm 2Pt ] HOR/HER on Pt(hkl) Pt face (110) 2 i0 [mA/cm ] 1.35 b [mV/decade] 33 6 4 ianodic : H2 2H+ + 2e- 2 inet 0 (i 0 rf ) -2 icathodic : 2H+ + 2e- H2 -4 -6 -8 -40 -30 -20 -10 0 10 20 30 overpotential h [mV] p. 90 40 Tafel Slope Impact – HOR/HER Example for the HOR/HER on low-index Pt single crystal faces, nearly identical i0’s were reported, while the Tafel slopes varied from 33 66 mV/dec: HOR/HER on Pt(hkl) Pt face (110) 2 i0 [mA/cm ] 1.35 b [mV/decade] 33 (0.05M H2SO4 at 60°C) (100) 0.76 44 (111) 0.83 66 from the definition of b: at 60ºC (333 K) and bHOR/HER from table (Markovic et al., J. Phys. Chem. B 101 (1997) 5405)) 25 HOR ,HER current density [ mA/cm 2Pt ] 20 2.303 R T 2 0.033V F HOR ,HER 2.303 R T 1 0.066V F 15 10 5 0 H2 2H+ + 2e2H+ + 2e- H2 the overpotential effect on current density is the stronger, the lower the Tafel slope -5 -10 -15 near h = 0, i h -20 -25 -100 -80 -60 -40 -20 0 20 40 60 80 100 overpotential h [mV] 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 91 Butler-Volmer: Linear Approximation in the region of small overpotentials, the Butler-Volmer equation can be linearized: for: a F h 1 and c F h 1 R T e i.e., R T a F R T h 1 a F R T h and e c F h R T 1 h c F R T R T a F and h R T b F h c F Ra TF h h R T therefore: i i e 0 ( T ,cO ,c R ) rf e i i0(T ,c ,c ) rf ( a c ) F h i0(T ,c ,c ) rf 2.303 1 O R O R R T special case as defined by Bard and Faulkner: ba a (1 ) n i i0 ( T ,c 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt and 1 h bc c n rf O ,c R ) F n h R T p. 92 Butler-Volmer: Linear Approximation for the previous example of HOR/HER on Pt(110): current density [ mA/cm 2Pt ] 6 4 HOR/HER on Pt(hkl) Pt face (110) i0 [mA/cm 2] 1.35 b [mV/decade] 33 since: (0.05M H2SO4 at 60°C) (100) 0.76 44 (111) 0.83 66 i0 (T ,cO ,cR ) rf ( a c ) (Markovic et al., J. Phys. Chem. B 101 (1997) 5405)) 2 < 10% error at h < b /3 0 < 10% error at -h < b /3 -4 -6 -30 -20 -10 0 10 20 R T 1 F Rch arg e tx obtain i0 from the slope in the linear reagion, if a,c & rf are known -2 -40 R T i F h 30 40 rf from cyclic voltammetry, XRD, or TEM a,c from Tafel plots overpotential h [mV] 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 93 Butler-Volmer: Tafel Approximation at large overpotentials, one of the Butler-Volmer equation terms becomes negligible: for: h ba 1 and h bc 1 i.e., h ba and h bc (where ba,c h bh a for anodic processes (h ba,c): i 10 bc anodic i0 ( T , cO , c R ) rf 10 10 h i0(T ,c ,c ) rf 10 ba O R 0.1 or, more commonly: log(ianodic) log i0(T ,c ,c ) rf O R for cathodic processes (h ba,c): 2.303 R T ) a ,c F 1 h ba log( icathodic ) log i0(T ,cO ,cR ) rf 1 h bc the log(i) vs. h relationship at high h is commonly referred to as Tafel equation 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 94 Butler-Volmer: Tafel Approximation for the previous example of HOR/HER on Pt(110) and Pt(111): HOR/HER on Pt(hkl) (0.05M H2SO4 at 60°C) Pt face (110) (100) (111) i0 [mA/cm2] b [mV/decade] 1.35 33 0.76 44 0.83 66 (Markovic et al., J. Phys. Chem. B 101 (1997) 5405)) 100 log( |i| ) [ mA/cm2Pt ] the accuracy of the Tafel equation (b c )- at |h| ½ba,c is better 10% (b a )-1 10 from Tafel plots, both (i0 rf) and ba,c can be determined 2H + 2e H2 + H2 2H + 2e - + - for slow kinetics, determination of 1 (i0 rf) requires extrapolation over (i 0 rf ) 0.1 -100 -80 -60 -40 -20 0 20 40 many orders of magnitude large errors for ORR in PEMFCs 60 80 100 overpotential h [mV] 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 95 HOR/HER Kinetic Models possible HOR reaction mech.: (K. Krischer & E.R. Savinova; in: Handbook of Het. Catalysis; Wiley (2007): ch. 8.1.1.) Tafel: H2 + 2Pt 2 Pt-H Volmer: Heyrovski: 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt Pt-H Pt + H+ + eH2 + Pt Pt-H + H+ + e- p. 96 Electrochemistry Basics - electrochemical cells & ion transport - electrochemical potential - half-cell reactions Lithium Ion Batteries (LiBs) - battery materials - application of batteries - “post-LiBs” Fuel Cell Basics & Applications - fuel cell types and materials - basic electrocatalysis - H2 reduction & O2 reduction kinetics - transport resistances 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 97 H2 Oxidation Reaction (HOR) Kinetics Ecell = Erev – iRW(RH) – hHOR – | hORR | – iRH+,an&ca (RH) – htx,O2(dry) – htx,O2(wet) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 98 HOR/HER Kinetics: 80°C, 100kPa H2 data fit with symmetric Butler-Volmer equation (a = c = ): F F h h 2 2 2 RT RT i io [ A / cm Pt ] 0.003 mg Pt / cm elect . 1000 [cm Pt / mg Pt ] e e h HER /h HOR [mV] 60 h’s too low to obtain a c 1 a c 2 a c 4 40 20 a c 0.5-1 from linear region: 0 io a c -20 R T h F LPt APt i io a c 0.47 A/cm2Pt -40 -60 -3 -2 -1 0 1 2 3 i [A/cm2] K.C. Neyerlin et al., J. Electrochem. Soc. 154 (2007) B631. 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 99 HOR/HER Kinetics (80°C, 100 kPa H2) h HER /h HOR [mV] 60 at 1.5 A/cm2 & 0.05 mgPt/cm2 : 30 A/mgPt 40 with pure H2 hHOR 2 mV 20 i0’s on the order of 100’s of mA/cm2Pt 0 -20 MEA 1 MEA 2 -40 -60 -1000 -500 0 500 im1000 [A/mgPt] MEA (aa + ac) TS [mV/dec.] i0 [mA/cm2Pt] #1 12 140 70 470 240 #2 12 140 70 600 300 600 240 most literature i0’s 10-100x too low (2-3x for 2580°C for Eact 10-20 kJ/mol in lit.) T [°C] i0 [mA/cm2Pt] 80 240 - 600 80 50 reaction HOR/HER HOR catalyst 5% Pt/C 5% Pt/C electrolyte PEMFC 96% H3PO4 HOR/HER Pt(hkl) Ptnano/C 0.05M H2SO4 60 0.8 - 1.4 N.M. Markovic et al. , J. Phys. Chem. B 101 (1997) 5405 0.1M H2SO4 25 20 S. Chen et al. , J. Phys. Chem. B 108 (2004) 13984 10% Pt/C Ptpc 0.5M H2SO4 25 J.X. Wang et al. , J. Electrochem. Soc. 150 (2003) A1108 0.01M HClO4 25 1 2.5 0.5M H2SO4 25 0.1M HClO4 25 1 1.7 - 3.0 H. Kita et al. , J. Electroanal. Chem. 334 (1992) 351 HER Pt(hkl) Pt(hkl), Ptpc K. Seto et al. , J. Electroanal. Chem. 226 (1987) 351 HER Ptpc 0.5M H2SO4 25 3 S. Trasatti, J. Electroanal. Chem. 39 (1972) 163 HOR HOR HOR HER 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt reference this study W. Vogel et al. , Electrochim. Acta 20 (1975) 79 R. Notoya et al. , J. Phys. Chem. 93 (1989) 5521 p. 100 O2 Reduction Reaction (ORR) Kinetics Ecell = Erev – iRW(RH) – hHOR – | hORR | – iRH+,an&ca (RH) – htx,O2(dry) – htx,O2(wet) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 101 ORR Kinetics measured 0 0 at 100%RH 0 with H2/O2 Ecell = Erev – DEW(RH) – hHOR – |hORR| – hH+,an&ca(RH) – htx,O2 i[A/cm2] EiR-free = Ecell + DEW(RH) -blog L[mg /cm2] A [cm2/mg ] Pt Pt Pt hORR follows Tafel-relation 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 102 ORR on Carbon-Supported Pt (Pt/C) i[A/cm2] EiR-free - hORR = 2.3RT/(cF)log LPt [mgPt/cm2] APt [cm2/mgPt] i0 (p ? [A/cm2] ,T) O2 g E*a 1 exp - 1 with: i0 (pO2,T) = i0 (100kPa, 353K) R T 353 K 100kPa pO2 * (J.S. Newman, Electrochem. Systems, Prentice Hall (1991)) fitted data range: 0.03 0.5 A/cm2 35 95°C 40 400 kPaa 0.91 fitted paramters with c 1*) : i0*(100kPa, 353K) = 2.110-8 A/cm2Pt literature? Ea = 67 kJ/mol literature ? g 0.5 fitted E iR-free [V] 0.89 0.87 0.85 0.83 0.81 0.79 hORR follows Tafel-relation in PEMFC range *) K.C. 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt 0.77 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 measured EiR-free [V] Neyerlin et al., J. Electrochem. Soc. 153 (2006) A1955. p. 103 Direct Methanol Fuel Cells (DMFCs) 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 104 DMFC Performance with Air-Feed literature data with Nafion 117® : Tcell cmeth. Pair sair anode catalyst °C mol/l1 kPaabs -- -- -- mgPt/cm2 mgPt/cm2 90 0.75 300 5 60%wt Pt1Ru1/C Pt-black 1.0 4.0 0.11 45 0.18 28 [1] 90 0.75 300 2 60%wt Pt1Ru1/C Pt-black 1.0 4.0 0.17 29 0.18 28 [1] 80 0.5 300 ? 1) Pt1Ru1-black Pt-black anode/cath.=2.6 0.06 43 0.11 24 [2] 100 0.5 300 ? 1) Pt1Ru1-black Pt-black anode/cath.=2.6 0.10 26 0.15 17 [2] 110 1.0 300 ? 2) 85%wt Pt1Ru1/C 85%wt Pt/C anode/cath.=2.0 0.04 50 0.09 22 [3] 90 0.5 150 >5 0.05 94 0.09 52 [4] PtRu 3) cath. catalyst loadinganode loadingcath. Pt-black 0.7 4.0 0.5V performance 0.4V performance W/cm2 mgPt/W W/cm2 mgPt/W 1) the air stoichiometry was only referred to as “high” and no specific value was given air stoichiometry was not specified 3) the used PtRu catalyst was unspecified wrt. composition (assumed 1:1 atomic ratio in above calculation) and support (black or C-supported) 2) power densities of 0.05-0.1 W/cm2 at 0.5 V and 0.1-0.2 W/cm2 at 0.4 V 5-10x lower W/cm2 and 100x higher mgPt/W than PEMFC (0.5 mgPt/W) [1] M.P. Hogarth et al., Plat. Met. Rev. 46 (2002) 146. [2] S.C. Thomas et al., Electrochim. Acta 47 (2002) 3741. [3] R. Dillon et al., J. Power S. 127 (2004) 112. [4] M. Baldauf and W. Preidel, J. Power S. 84 (1999) 161. 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt Ref. p. 105 Ideal Performance of Air-Fed DMFC assumptions : membrane with “zero” CH3OH permability use 25mm thin membrane no transport resistances in electrodes/DM (Rsheet 0, htx,O2 0 , htx,CH3OH 0) conditions: 1mgPtRu/cm2 (80m2/gPtRu), 0.4mgPt/cm2 (80m2/gPt), 80oC Erev(80C, 21kPa O2, 1M CH3OH) = 1.165 V 1.1 hORR 1.0 From: H.A. Gasteiger and J. Garche, in: Handbook of Heterogeneous Catalysis, 2nd edition, Wiley (2007), in press. 0.9 0.8 iR-loss E [V] 0.7 EDMFC(ideal) 0.6 0.5 0.4 best-possible performance 0.3 hanode 0.2 DMFCideal 0.1 0.0 0.0 0.2 0.4 0.6 0.8 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt with current catalysts improvements only via novel catalysts 1.0 i [A/cm2] p. 106 Electrochemistry Basics - electrochemical cells & ion transport - electrochemical potential - half-cell reactions Lithium Ion Batteries (LiBs) - battery materials - application of batteries - “post-LiBs” Fuel Cell Basics & Applications - fuel cell types and materials - basic electrocatalysis - H2 reduction & O2 reduction kinetics - transport resistances 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 107 Ecell = Erev – iRW(RH) – hHOR – | hORR | – iRH+,an&ca (RH) – htx,O2(dry) – htx,O2(wet) hHOR : hORR : K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 154 (2007) B631. K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 153 (2006) A1955. E.L. Thompson, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 154 (2007) B783. RH+,(RH) : Y. Liu, M.W. Murphy, D.R. Baker, W. Gu, C. Ji, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 156 (2009) B970 only measured kinetic & transport properties (DH2O , sionomer(RH) , DO2,eff , kthermal ,...) no fitting parameters ! detailed model in: W. Gu, D.R. Baker, Y. Liu, H.A. Gasteiger, in: Handbook of Fuel Cells (eds.: W. Vielstich, H.A. Gasteiger, H. Yokokawa), Wiley (2009): vol. 6, pp. 631. 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 108 MEA Performance Analysis ST19-S0559 (Nano-x coating) RC FCPM op-line 0.90 H2/air (s=1.5/2), 150kPaabs, <50% RHinlet 2 2 MEA: Gore 5720 (18 0.05/0.4mg mm, 0.2/0.3 mgPtPt /cm , I/C=1.2) 25mm membrane and /cm MEA DM/MPL: Pre-compressed SGL 25BC Voltage (V) 0.85 hORR=410 mV hHOR < 5 mV*) ) 0.80 0.75 ( 60 mV hHFR=90 mV (h =30Rcontact mV) ) mem 0.70 htx,H+ =18 mV htx,O2(dry)=26 mV 0.65 from: W. Gu, D.R. Baker, Y. Liu, H.A. Gasteiger, in: Handbook of Fuel Cells, Wiley (2009): vol. 6, pp. 631. 0.60 0.0 0.3 0.6 0.9 1.2 undefined losses, htx,O2(wet), of only 20mV improvements require new materials htx,O2(wet)=18 mV Ecell 1.5 [A/cm2] at 1.5 A/cm2: mg Pt 2 g cm MEA 0.5 Pt W kW 0.9 2 cm MEA 0.45 need 10x better ORR catalysts to reach 0.05/0.04 mgPt/cm2MEA 0.1 gPt/kW 2012-06-05 AMS Battery & FC Lectures - Fuel Cell (Michele P. for Hubert G.).ppt p. 109
© Copyright 2026 Paperzz