Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 The Photoionization of Lithium, Sodium, and Potassium and the Photodetachment of the Negative Hydrogen Ion. Richard Lee Smith Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: http://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Smith, Richard Lee, "The Photoionization of Lithium, Sodium, and Potassium and the Photodetachment of the Negative Hydrogen Ion." (1971). LSU Historical Dissertations and Theses. 2090. http://digitalcommons.lsu.edu/gradschool_disstheses/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. « a4 L w '• 'fit* - t ■**J te n r 1! 72-3526 SMITH, R ich ard Lee, 1943THE PHOTOIONIZATION OF LITHIUM, SODIUM, • AND POTASSIUM AND THE PHOTODETACHMENT OF THE NEGATIVE HYDROGEN ION. The L o u isia n a S ta te U n iv e rs ity and A g r ic u ltu r a l and M echanical C o lle g e , P h .D ., 1971 P h y s ic s , atom ic | University Microfilms, A XEROXCom pany, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED THE PHOTOIONIZATION OF LITHIUM, SODIUM, AND POTASSIUM AND THE PHOTODETACHMENT OF THE NEGATIVE HYDROGEN ION A D is s e rta tio n S u b m itted t o th e G rad u ate F a c u lty o f th e L o u is ia n a S t a t e U n iv e r s ity and A g r i c u l tu r a l and M echanical C o lleg e i n p a r t i a l f u l f i l l m e n t o f th e re q u ire m e n ts f o r th e d e g re e o f D octor o f P h ilo so p h y in The D epartm ent o f P h y sic s and Astronomy by R ic h a rd Lee Sm ith B .S ., B ay lo r U n iv e r s ity , 1966 A u g u st, 1971 EXAMINATION AND THESIS REPORT Candidate: R ic h a r d L ee S m ith Major Field: P h y s ic s Title of Thesis: The P h o t o i o n i z a t i o n o f L i t h i u m , S o d iu m , and th e P h o to d e ta c h m e n t o f th e N e g a tiv e an d P o ta s s iu m H y d ro g e n I o n Approved: 1 ? .U A Major Professor and Chairman Dean o( the Graduate School EXAMINING COMMITTEE: Date of Examination: J u ly 16, 1971 PLEASE NOTE: Some P a g e s h a v e i n d i s t i n c t p rin t. Filmed as r e c e iv e d . UNIVERSITY MICROFILMS ACKNOWLEDGMENTS The a u th o r w ish es to e x p re ss h i s g r a t i t u d e t o D rs. R. W. LaBahn and J . J . M atese f o r t h e i r a s s i s t a n c e th ro u g h o u t th e co m p letio n o f t h i s d i s s e r t a t i o n . The a u th o r i s in d e b te d to D r. J . N. B a rd s le y f o r communicating h i s p s e u d o p o te n tia l p a ra m e te rs p r i o r t o p u b l i c a t i o n , and to D r. R. S . O beroi f o r th e u s e o f h i s com puter program s. Thanks a r e a l s o due to D rs. R. J . W. H enry and J . C allaw ay f o r h e l p f u l d is c u s s io n s and comments. F in a n c ia l a s s i s t a n c e r e c e iv e d from th e "D r. C h a rle s E. C oates M emorial Fund o f th e LSU F oundation" f o r th e p u b l i c a t i o n o f t h i s work i s g r a t e f u l l y acknow ledged. T h is d i s s e r t a t i o n i s d e d ic a te d to my w if e , E l iz a b e th , who ty p e d th e m a n u sc rip t and was a c o n s ta n t so u rc e o f encouragem ent. ii TABLE OF CONTENTS Page A ck n o w led g m en ts................................................................................................................. i i L i s t o f T a b l e s ................................................................................................................. i v L i s t o f F i g u r e s ..................................................................................................................... A b s t r a c t ........................................................................................................................ P a rt I ; v ii HIOTOIONIZATION OF LITHIUM, SODIUM, POTASSIUM i 1 -1 I n t r o d u c t i o n ....................................................................................................... 2 1 -2 T h e o r y .....................................................................................................................^ 1 -3 E v a lu a tio n o f P s e u d o p a r a m e te r s I-U * 8 R e s u lts an d D is c u s s io n ...................................................................... • 10 A. B. C. 1 -5 S o d i u m ................................................................................................... 10 L i t h i u m ...................................................................................................i 2 P o ta s s iu m ................................................................................................... i 1* C o n c l u s i o n s ..................................................................................................... i® P art I I : HIOTOBETACHMENT OF NEGATIVE HYDROGEN ION 28 I I -1 I n t r o d u c t i o n ..................................................................................................... 29 I I -2 Wave F u n c t i o n s ...............................................................................................32 A. B. Bound S t a t e ............................................................................................ 32 Continuum S t a t e ........................................................................................3 ° 1. 2. S h o rt Range C o e f f i c i e n t s .................................................... 38 A sy m p to tic C o e f f i c i e n t s ........................................................... ^2 I I -3 M u ltic h a n n e l P h o to d e ta c h m e n t....................................................................^9 Il-k P hotodetachm ent R e s u lts and C onclusions Below t h e I n e l a s t i c T h r e s h o l d .........................................................................52 I I -5 R e s u lts an d C o n clu sio n s i n t h e ^P Resonance R egion • • 55 R e f e r e n c e s .............................................................................................................................. 88 V ita - ........................................ 69 iii LIST OF TABLES T ab le I C a lc u la te d non-coulom b an d quantum d e f e c t p-wave p h a se s h i f t s i n r a d ia n s II The e f f e c t t h a t t h e b a s is s e t h a s on th e c o n tr ib u tio n s t o t h e p h o to d etach m en t c ro s s s e c tio n s f o r a f i n a l s t a t e i n c h a n n e l f o u r. LIST OF FIGURES F ig u re I Page P h o to io n iz a tio n c ro s s s e c tio n s o f sodium , u s in g X -in d ep en d en t p s e u d o p o te n tia l and in c lu d in g p o la riz a tio n e f f e c ts . II 21 P h o to io n iz a tio n c r o s s s e c tio n o f sodium u s in g th e X -dependent p s e u d o p o te n tia l o f B a rd s le y . III Com parison o f t h e p h o to io n iz a tio n r e s u l t s o f sodium t o o th e r sodium r e s u l t s . IV 23 P h o to io n iz a tio n c ro s s s e c tio n s o f li th iu m , u s in g th e Yukawa form o f B a r d s le y 's p s e u d o p o te n tia l. V 22 2k Com parison o f o u r r e s u l t s f o r lith iu m t o o th e r c a l c u l a t i o n s o f p h o to io n iz a tio n c ro s s s e c tio n o f li t h i u m . VI 25 P h o to io n iz a tio n c r o s s s e c tio n o f p o ta ss iu m , u s in g th e p s e u d o p o te n tia l o f B a rd s le y . V II V III A d ju s te d p h o to io n iz a tio n c ro s s s e c tio n o f p o ta ss iu m . 26 27 P hotodetachm ent c ro s s s e c tio n s i n th e d ip o le v e l o c i t y a p p ro x im a tio n f o r H~ u s in g t h r e e d i f f e r e n t hound s t a t e s . IX 60 A com parison o f p h o to d etach m en t c ro s s s e c tio n s i n d ip o le v e l o c i t y a p p ro x im a tio n o b ta in e d u s in g th e S chw artz bound s t a t e o f H*" t o th e r e s u l t s u s in g th e bound s t a t e o f M atese and O b ero i. v 6l A com parison o f p h o to d etach m en t c r o s s s e c tio n s i n d ip o le le n g th a p p ro x im a tio n o b ta in e d u s in g th e Schw artz bound s t a t e o f H" t o th e r e s u l t s u s in g th e bound s t a t e o f M atese and O b e ro i. XI Photodetachm ent r e s u l t s f o r H~ o b ta in e d w ith th e s ix s ta te X II e x p a n sio n o f M atese and O b e ro i. 63 ( l s - 2 s ) and ( ls - 2 p ) c r o s s s e c tio n s i n th e en erg y r e g io n o f th e ^P re s o n a n c e . X III 62 The ^P shape re so n a n c e p h o to d etach m en t c ro s s s e c t io n s . vi 6^ 65 ABSTRACT The d i s s e r t a t i o n i s a two p a r t w ork. e n t i t y from P a r t I I . P a r t I i s a s e p a r a b le I n P a r t I a p s e u d o p o te n tia l fo rm alism i s u sed t o c a l c u l a t e th e c r o s s s e c tio n f o r p h o to io n iz a tio n o f sodium , l i t h i u m , and p o ta s s iu m f o r e j e c t e d e l e c t r o n e n e r g ie s from th r e s h o ld t o a b o u t 15 eV. B oth .th e d ip o le le n g th and d ip o le v e l o c i t y m a trix form s a r e com puted. F or sodium th e d ip o le le n g th r e s u l t s a r e i n good agreem ent w ith ex p erim en t away from th e lo w e s t th r e s h o l d . The d ip o le v e l o c i t y r e s u l t s f o r sodium , on t h e o th e r h an d , s e v e r e ly u n d e re s tim a te t h e c r o s s s e c tio n e x c e p t v e r y n e a r t h r e s h o ld . For li t h i u m th e d ip o le le n g th and v e l o c i t y r e s u l t s a r e l e s s th a n th e e x p e rim e n ta l r e s u l t s b u t compare f a v o r a b ly w ith o th e r t h e o r e t i c a l re s u lts . F o r p o ta s s iu m t h e c r o s s s e c t io n e x h i b i t s th e g e n e r a l shape o f e x p e rim e n ta l c u rv e s. I n P a r t I I th e v a r i a t i o n a l m ethod p ro p o se d b y F .E . H a r r is and ex ten d ed by R.K . N esb et i s employed t o o b ta in wave f u n c tio n s f o r t h e s i n g l e t p-w ave continuum f u n c tio n s o f th e n e g a tiv e hydrogen i o n , u s in g a l s - 2 s - 2 p c lo s e c o u p lin g a p p ro a c h . The b o u n d -fre e a b s o r p tio n c o e f f i c i e n t i s c a lc u la te d u s in g l e n g t h , v e l o c i t y , and a c c e l e r a t i o n form s o f th e d ip o le m a trix e le m e n t. t h e s e c a l c u l a t i o n s a r e p r e s e n te d . The r e s u l t s o f P a r t i c u l a r a t t e n t i o n i s g iv e n t o th e e n e rg y r e g io n n e a r 0 .7 5 1 ry d w here th e ^P shape re so n a n c e e x is ts . Com parison o f th e r e s u l t s from t h e l e n g th , v e l o c i t y and a c c e l e r a t i o n o p e r a to r m ethods i n d i c a t e t h a t th e wave f u n c tio n s o b ta in e d by t h i s v a r i a t i o n a l m ethod a r e s u f f i c i e n t l y a c c u r a te f o r c a l c u l a t i n g t h e p h o to d etach m en t o f H’ . vii PART I - PHOTOIONIZATION OF LITHIUM, SODIUM, POTASSIUM 1 SECTION 1-1 INTRODUCTION I n p r i n c i p l e th e c ro s s s e c tio n s f o r p h o to io n iz a tio n can b e c a l c u l a t e d when a c c u r a te wave f u n c tio n s a r e known f o r th e s t a t e s o f th e atom s and i o n s . I n p r a c t i c e , assu m p tio n s have t o be made i n o r d e r t o o b ta in t h e n e c e s s a r y wave f u n c tio n s . I n a p re v io u s p u b l i c a tio n by t h e au th o r,'* ' a p s e u d o p o te n tia l form alism was u sed to c a l c u l a t e t h e p h o to io n iz a tio n c r o s s s e c tio n o f sodium. The p h o to i o n i z a t i o n c ro s s s e c t io n r e s u l t s u s in g th e d ip o le le n g th form o f th e m a trix w ere i n v e ry good agreem ent w ith ex p erim en t. The o b je c t o f t h i s work i s to e x te n d th e work on sodium to in c lu d e p o l a r i z a t i o n e f f e c t s and to a p p ly t h e p s e u d o p o te n tia l method t o o b ta in p h o to i o n i z a tio n c r o s s s e c tio n s o f lith iu m and p o ta ssiu m . The p s e u d o p o te n tia l method 2 h a s b een used e x te n s iv e ly i n s o li d s t a t e p h y s ic s and h a s o n ly r e c e n t l y b een a p p lie d to ato m ic c o l l i s i o n p ro cesses. 3 "6 The g e n e r a l co n cep t o f th e p s e u d o p o te n tia l m ethod i s t h a t a v a le n c e e l e c t r o n i n an atom o r a s o lid sees a weak n e t e f f e c t i v e p o te n tia l. I n s id e th e co re o f th e atom th e n u c le a r p o t e n t i a l a c t in g on a v a le n c e e l e c t r o n i s v e ry s tr o n g and a t t r a c t i v e . A lso i n t h i s r e g io n th e P a u li p r i n c i p l e r e q u ir e s t h a t th e v ale n c e wave f u n c tio n be o rth o g o n a l t o th e o r b i t a l s o f th e c o re e le c tr o n s . Thus th e v a le n c e e l e c t r o n wave f u n c tio n o s c i l l a t e s r a p i d l y , co rresp o n d in g t o a h ig h k i n e t i c e n e rg y . The l a r g e n e g a tiv e p o t e n t i a l en erg y i n s i d e t h e co re o f th e atom and th e l a r g e p o s i t i v e k i n e t i c energy which th e v a le n c e 2 3 e le c tr o n h a s t h e r e c a n c e l to g iv e a weak n e t e f f e c t i v e p o te n tia l. Thun a system o f ( Z - l ) co re e le c tr o n s and a v a le n c e e l e c t r o n can he a p p ro x i mated a s a o n e e l e c t r o n system w ith th e e f f e c t o f th e core e le c tr o n s and ( Z - l) p r o to n s b e in g r e p la c e d by a weak (and u s u a ll y re p u ls iv e ) p o t e n t i a l c a l l e d th e " p s e u d o p o te n tia l" . The p s e u d o p o te n tia l used i n 2 t h i s p a p e r i s n o t d ev elo p ed a lo n g th e l i n e o f P h i l i p s and Kleinman o r 7 A u s tin , H e in e , and Sham, b u t alo n g th e model p o t e n t i a l method o f g Abarenkov an d H eine . The o n ly req u irem en t on t h e p s e u d o p o te n tia l i s t h a t i t g iv e s th e same en erg y e ig e n s ta te s a s th e r e a l problem . The p s e u d o p o te n tia l form alism i s e s p e c i a l l y s u ite d to th e a l k a l i atom s. The v a le n c e e l e c t r o n and th e c lo s e d - s h e ll c o re a re known t o i n t e r a c t r a t h e r w eakly an d th u s th e e f f e c t s o f t h e c o re upon th e v a le n c e e le c tr o n may b e r e p r e s e n te d to a good ap p ro x im a tio n b y some e f f e c t iv e c e n tr a l p o t e n t i a l . The a l k a l i atoms a r e a ls o w e ll s u ite d f o r com pari son o f th e o r y t o e x p e rim e n t, due to th e e a se w ith w hich th e y may b e o b ta in e d as a p p ro x im a te ly monatomic v ap o rs and t o th e co n v en ien tly low i o n iz a tio n p o t e n t i a l . The p l a n o f P a r t I i s as fo llo w s : S e c tio n 1 -2 p r e s e n ts th e p s e u d o p o te n tia l ...method a s a p p lie d t o c a lc u la te p h o to io n iz a tio n cross s e c t i o n s ; i n S e c tio n 1 -3 t h e method o f d eterm in in g t h e p s e u d o p o te n tia l i s d is c u s s e d ; i n S e c tio n 1-1+ th e r e s u l t s a r e compared t o experim ental r e s u l t s and o t h e r t h e o r e t i c a l w ork; th e c o n c lu s io n s a r e p resen ted i n S e c tio n 1-5* SECTION 1-2 THEORY The i o n i z a t i o n o f a n ato m ic system by a n e x t e r n a l e l e c t r o m ag n etic f i e l d i s r e a d i l y t r e a t e d b y p e r t u r b a t i o n t h e o r y u s in g a s e m i - c l a s s i c a l m odel f o r t h e i n t e r a c t i o n betw een bound e le c tr o n s and th e r a d i a t i o n f i e l d . ^ I n th e d ip o le a p p ro x im a tio n an e le c tr o n e j e c t e d from t h e v a le n c e s - s t a t e o f an a l k a l i atom w i l l go in to a continuum p - s t a t e . U sin g a " s i n g le ch an n el" a p p ro x im a tio n and assum ing t h a t t h e d i f f e r e n c e s i n t h e c o re wave f u n c tio n s f o r th e atom and th e io n a r e n e g l i g i b l e , t h e d ip o le le n g th (L) and th e d ip o le v e l o c i t y (V) fo rm s o f th e p h o to io n iz a tio n c r o s s s e c tio n a re ct(L5V) = | T raao2 ( I + k 2 )|M ^L,V^ |2 w here I i s th e f i r s t i o n i z a t i o n p o t e n t i a l , k 2 I. i s t h e e n e rg y o f th e e je c t e d e l e c t r o n , m (i) = J V r>r W r)a r and M(v ) . J > s{ r)[l V r ) + A V p )]a r. !. h 2 —IQ 2 I n t h e above fo rm u la s — Traa^ = 8 .5 6 x 10 cm and th e rem aining q u a n t i t i e s a r e ta k e n i n th e system o f ato m ic u n i t s = 1, e 2 1 = —= 2 5 The wave f u n c tio n s 7 and X a r e n o rm a liz e d red u ced r a d i a l wave ns Kp f u n c tio n s f o r th e v a le n c e e l e c t r o n . The two a l t e r n a t i v e fo rm s, and M^, a r e i d e n t i c a l when th e wave f u n c tio n s V ( r ) and \ ( r ) ' ns Kp a r e e x a c t e i g e n s ta te s o f t h e same H a m ilto n ia n . One i n t e r e s t i n g f e a tu r e a b o u t v a le n c e e le c tr o n s o f a l k a l i atom s i s th e e x te n t to w hich t h e i r o b se rv e d p r o p e r t i e s p a r a l l e l th o s e t o be ex p e c te d from a p p a r e n tly cru d e m o d els. i s th e p s e u d o p o te n tia l fo rm a lism . One su ch model I n in tr o d u c in g th e p seu d o p o te n t i a l fo rm a lism , th e a c t u a l sy stem i s r e p la c e d b y a one e l e c tr o n sy stem . The e f f e c t o f th e c o re e l e c t r o n s i s r e p r e s e n te d b y th e p s e u d o p o te n tia l where we choose t h e model form e I.b Vp = ^ The pseudo wave f u n c tio n s s a t i s f y t h e S c h ro d in g e r e q u a tio n : fo r t h e bound s - s t a t e 2 [-%■ + § " V + e ]$ ( r ) = 0 dr p 1 .5 and f o r th e continuum p-wave 1.6 dr r The bound s t a t e pseudo wave f u n c tio n i s n o rm a liz e d so t h a t 1 .7 The continuum pseudo wave f u n c tio n h a s th e a s y m p to tic form § ^ ( r) ~ k 2 s i n [ k r - ^ ^ l n ( 2k r ) + cr^ + 61 (k 2 ) ] . 2 61 (k ) i s th e non-coulom b p h ase s h i f t and 1 .8 i = a r g T (2 + £•). The pseudo wave f u n c tio n $ i s a sm oothly v a ry in g f u n c tio n in s id e th e c o re . Tlje a c t u a l wave f u n c tio n o f th e v a le n c e e l e c t r o n m ust be o rth o g o n a l t o th e c o re s t a t e s . Y (r) i s th e pseudo wave f u n c tio n p r o p e r ly o rth o g o n a l! z e d t o th e c o re s t a t e wave f u n c tio n s 1 -9 F o r th e bound s t a t e , c o re s t a t e s o f th e atom a r e u s e d and f o r th e continuum s t a t e co re s t a t e s o f th e io n sh o u ld be u s e d . However f o r t h e a l k a l i s th e d i f f e r e n c e s i n th e c o re s t a t e s o f th e atom and th e s in g l y io n iz e d io n a r e n e g l i g i b l e . A c c u ra te c o re s t a t e s have been c a l c u l a t e d w ith in th e H a rtre e -F o c k ap p ro x im a tio n b y C lem en ti and o t h e r s . T h e o r th o g o n a liz e d bound s t a t e wave f u n c tio n Yn s i s r e n o rm a liz e d so t h a t 1 .10 The continuum wave f u n c tio n ^ Eq. ( 1 .8 ) . i s a s y m p to tic a lly n o rm a liz e d b y The pseudo d ip o le le n g th c ro s s s e c tio n m en tio n ed i n t h i s paper i s 1 .11 7 w here t h e m a trix e lem en t i s c a lc u l a te d w ith th e n o n -o rth o g o n a liz e d pseudo wave f u n c tio n s , = / V 1*) r \ ( r )d*. 1.12 SECTION 1-3 EVALUATION OF PSEUDO PARAMETERS The p s e u d o p o te n tia l V i s d e fin e d by E q. ( i A ) . V alues f o r P th e d ip o le p o l a r i z a b i l i t y , o^ a r e ta k e n from th e b e s t e s tim a te s a v a i l a b l e i n th e l i t e r a t u r e . ^ The v a lu e s o f th e a and th e s c re e n q in g c o n s ta n t, d , axe chosen so t h a t th e p s e u d o p o te n tia l re p ro d u c e s , a s c l o s e ly a s p o s s i b l e , t h e spectrum o f f - s t a t e i e v e l s f o r th e v a le n c e e l e c t r o n . 12 The f - l e v e l s a r e u sed t o d eterm in e or ,d q b ecau se f o r a l a r g e A v a lu e t h e c e n t r i f u g a l te rm w i l l dom inate o v er th e f i r s t te rm i n Eq. (I A ) and one can s e t = 0. The r e s u l t i n g v a lu e s o f d a r e on th e o rd e r o f th e r a d iu s o f th e c o re . The v a lu e s o f ^ a r e u s u a ll y s m a lle r th a n th e co rre sp o n d in g quad- ru p o le p o l a r i z a b i l i t i e s . The p a ra m e te rs and 0^ a r e e v a lu a te d by r e q u ir in g t h a t th e pseudo wave fu n c tio n s have th e same e n erg y spectrum a s th e lo w er A s t a t e s o f th e v a le n c e e l e c t r o n o f th e a l k a l i atom . E x p e rim e n ta l e n e r g ie s w ith s p i n - o r b i t s p l i t t i n g s u b tr a c te d o f f 13 a re u sed to e v a lu a te Q and 0. Two m ethods a r e u sed t o e v a lu a te Q and 0. The f i r s t m ethod, 5 su g g e ste d by C allaw ay and Laghos , r e q u ir e s t h a t Q and 0 be chosen so t h a t th e e ig e n - e n e r g ie s o f th e f i r s t s - and p-pseudo wave fu n c tio n s a g re e e x a c t l y w ith th e e x p e rim e n ta l e n e r g ie s o f th e n s - and n p - s ta te s o f th e v a le n c e e l e c t r o n o f th e a l k a l i atom , where n = 2 ,3 , and U f o r l ith iu m , sodium , and p o ta s s iu m , r e s p e c t i v e l y . 8 Thus i n th e f i r s t 9 method th e p a ra m e te rs Q and 0 a r e in d e p e n d e n t o f t h e o r b i t a l a n g u la r momentum X. A lth o u g h th e ^ -in d e p e n d e n t p s e u d o p o te n tia ls g iv e good r e s u l t s f o r sodium , i n th e g e n e r a l c a se Q, and 0 sh o u ld be fu n c tio n s o f Si. The e f f e c t o f exchange can be c o n s id e re d a s g iv in g r i s e t o a d i f f e r e n t p o t e n t i a l f o r s t a t e s o f d i f f e r e n t a n g u la r momentum. The f a c t t h a t t h i s e f f e c t i s s m a ll i n sodium i s ev id en ced b y th e su c c e ss o f P ro k o fje w lU i n a c c o u n tin g f o r a l l th e s p e c t r a l l e v e l s o f sodium on t h e b a s i s o f a s in g le p o t e n t i a l . F o r L i and K th e e f f e c t s o f exchange can n o t be n e g le c te d . B a rd s le y 12 h a s found v a lu e s o f Q, and 0 f o r n = 1 (Yukawa form ) f o r L i , Na, an d K w hich a re X -dependent. He h a s a l s o d eterm in ed th e s e w ith n = 0 (e x p o n e n tia l form ) f o r L i and Na. F or a s t a t e w ith H - 0 , th e pseudo p a ra m e te rs Q and 0 a r e chosen so t h a t th e s s f i r s t two s - s t a t e e n erg y l e v e l s o f t h e pseudo system a g re e e x a c tly w ith th e e n e r g ie s o f th e"g ro u n d and f i r s t e x c ite d s - s t a t e o f th e v a le n c e e l e c t r o n . S im ila r l y f o r a s t a t e w ith X = 1 , and 0^ a r e chosen so a s t o rep ro d u c e th e c o r r e c t e n e r g ie s f o r t h e f i r s t and second e x c i t e d p - s t a t e s o f th e v a le n c e e l e c t r o n . F o r bound s t a t e s , th e o n ly re q u ire m e n t o f th e p o t e n t i a l i s t h a t i t y i e l d c o r r e c t e n e rg ie s o v e r th e e n e rg y ra n g e i n which th e p o t e n t i a l i s b e in g u s e d . However, f o r t h e continuum s t a t e s , th e re q u ire m e n t o f t h e p s e u d o - p o te n tia l i s t h a t t h e p o t e n t i a l y i e l d Q a c c u r a te p h a s e s h i f t s . B a r d s le y 's v a lu e s o f and 0^ le d t o non coulomb p-w ave p h a se s h i f t s which a r e shown i n T a b le I t o b e i n good agreem ent t o t h e quantum d e f e c t v a lu e s . SECTION 1-1+ RESULTS AND DISCUSSION E q u a tio n s ( 1 .5 ) and ( 1 .6 ) f o r th e pseudo wave f u n c tio n s were s o lv e d n u m e r ic a lly u s in g N um erov's m ethod. A ll i n t e g r a l s were e v a lu a te d n u m e ric a lly u s in g a f i v e - p o i n t fo rm u la . The r e s u l t s o f th e c a l c u l a t i o n s a r e p r e s e n te d i n F ig u re s 1 th ro u g h 7 where th e y a r e com pared w ith o th e r c a l c u l a t i o n s and e x p e rim e n ta l d a t a ( th e o r d in a te a x is i n th e s e f ig u r e s i s la b e le d i n term s o f th e e n erg y 2 o f t h e e j e c t e d e l e c t r o n i n u n i t s o f e l e c tr o n v o l t s ; e(eV) = 13*6 k ) . A - SODIUM I n an e a r l i e r p a p e r1 t h e a u th o r h a s a p p lie d a p s e u d o p o te n tia l method f o r sodium and o b ta in e d good agreem ent betw een th e d ip o le le n g th and ex p erim en t away from t h e lo w e st th r e s h o ld . The p seu d o p o t e n t i a l i n t h a t work was o f t h e form Vp M = | e ' Pr w here Q, = 20.1+3 and 3 = 2.01+75* T h is p o t e n t i a l e x a c t l y re p ro d u c e s th e e x p e rim e n ta l 3 s and 3p e n e rg y l e v e l s o f th e v a le n c e e l e c tr o n b u t n e g le c ts p o la r iz a tio n e f f e c ts . B e tte r agreem ent betw een th e o r y and e x p erim e n t i s o b ta in e d by in c lu d in g p o l a r i z a t i o n te rm s i n th e pseudop o te n tia l. Upon u s in g th e same p o l a r i z a t i o n te rm s a s i n Eq. (1.1+) 10 11 and s e t t i n g a\^ = 0 .9 4 5 a ^ , ar^ = 1.5 2 3 a^ and d = 1 . 1 , th e r e s u l t i n g p o t e n t i a l e x a c tly re p ro d u c e s t h e e x p e rim e n ta l 3s and 3P en erg y l e v e l s o f th e v a le n c e e l e c tr o n f o r Q, = 16.1*37 and P = 1 .7 7 4 4 8 . The p h o to io n iz a tio n c ro s s s e c tio n f o r th e p s e u d o p o te n tia l w ith p o l a r i z a tio n in c lu d e d i s compared t o t h e e x p e rim e n ta l r e s u l t s o f Hudson and C a r te r 17 i n F ig u re 1 . L and V i n d i c a t e th e d ip o le le n g th and v e l o c i t y r e s u l t s from th e f u l l p s e u d o p o te n tia l fo rm alism w h ile P i s th e p s e u d o -d ip o le le n g th c ro s s s e c t io n d e fin e d by Eq. ( i . l l ) . A more g e n e r a l fo rm alism i s t o make th e p s e u d o p o te n tia l p a ra m e te rs Q and P X -dependent a s i n d ic a te d i n Eq. ( 1 . 4 ) . When t h i s i s d o n e, B a rd s le y o b ta in s th e fo llo w in g p a ra m e te rs f o r th e Yukawa form ( n = l ) ; Q = 329. 792, P S Pp = 2 .4 0 3 . ab o v e. 12 S = 3*858 and 0 'jp = 5 2 .7 3 6 , The v a lu e s o f or^, or^, an d d a r e t h e same a s s t a t e d The r e s u l t i n g p h o to io n iz a tio n c ro s s s e c tio n s a r e compared t o ex p erim en t i n F ig u re 2 . A lth o u g h t h e ^-d ep en d en t p se u d o p o te n t i a l c r o s s s e c tio n s do n o t seem to a g re e as w e ll w ith e x p e rim e n t, th e r e s u l t s a r e s t i l l good when compared to o th e r t h e o r e t i c a l re s u lts . A s l i g h t im provem ent o f th e c ro s s s e c tio n can b e o b ta in e d b y changing from th e Yukawa form t o an e x p o n e n tia l form (n = 0 ). The c o rre sp o n d in g p s e u d o p o te n tia l p a ra m e te rs a r e ; Q = 635*024, p = 4 .5 3 4 s s and Op = 79*542, P^ = 2 .9 2 2 . The r e s u l t i n g d ip o le l e n g th p h o to io n iz a t i o n c ro s s s e c t i o n s , la b e le d L ', a r e shown i n F ig u re 2 . The p seu d o p o t e n t i a l o f th e Yukawa form seems t o g iv e b e t t e r r e s u l t s n e a r th e th r e s h o ld w hereas th e e x p o n e n tia l form te n d s to g iv e b e t t e r r e s u l t s 12 f o r h ig h e r p h o to n e n e r g i e s . However th e d if f e r e n c e does n o t seem to be s i g n i f i c a n t f o r sodium . The t h e o r e t i c a l w orks o f S e a to n , B urgess and S e a to n , Cooper, Boyd, S h eld o n , and McGuire a r e compared to ex p erim en t i n F ig u re 3« S ea to n 18 com putes t h e c r o s s s e c t io n u s in g H a rtre e -F o c k wave f u n c tio n s . 19 Cooper ^ u s e s a H a rtre e -F o c k bound s t a t e and a l o c a l i z e d form o f th e same H a rtre e -F o c k p o t e n t i a l a s found i n th e bound s t a t e c a lc u l a t i o n s t o compute t h e continuum o r b i t a l . Boyd 20 The c a l c u l a t i o n s o f c o n s i s t o f a c e n t r a l H a r tr e e f i e l d a p p ro x im a tio n m o d ifie d t o in c lu d e some c o r r e l a t i o n and p o l a r i z a t i o n e f f e c t s . S eato n B u rg ess and u s e th e quantum d e f e c t m ethod t o o b ta in th e c ro s s s e c t io n s . S heldon 21 a ls o u s e d t h e quantum d e f e c t m ethod b u t a d ju s te d th e p a ra m e te rs t o o b t a i n ag reem ent w ith th e e x p e rim e n ta l c r o s s s e c tio n a t th r e s h o l d . McGuire 22 u s e s a c e n t r a l p o t e n t i a l fo rm alism w ith a model p o t e n t i a l o f th e form V (r) = 2 z / r - A,, r < r ^ ; V( r ) = 2 / r , r > r ^ ; r^ = 2 ( z - l) /A , where z and A a r e chosen t o f i t o b se rv e d te rm v a lu e s f o r t h e v a r io u s ato m s. ap p ro x im a te d th e Herman and S k illm a n s tra ig h t lin e s . I n a l a t e r c a l c u l a t i o n , McGuire 2b 23 p o te n tia l by a s e rie s o f The p a ra m e te rs w ere th e n a d ju s te d so t h a t th e model e ig e n v a lu e s and th o s e o f Herman and S k illm a n w ere i n r e a s o n a b le ag reem en t. B - LITHIUM The e f f e c t o f r e p la c in g th e co re b y a p s e u d o p o te n tia l u s u a lly le a d s t o a r e p u l s i v e p o t e n t i a l . T h is can be a t t r i b u t e d t o th e P a u li 13 e x c lu s io n p r i n c i p l e , w hich i n h i b i t s an e l e c tr o n from p e n e tr a tin g i n t o a r e g io n a lr e a d y o c c u p ie d by e l e c t r o n s o f th e same symmetry. F or li t h i u m an e l e c t r o n i n a p - s t a t e i s n o t ex clu d ed from th e co re b y t h e P a u li p r i n c i p l e . As a r e s u l t , th e p - s t a t e e n erg y l e v e l s f o r l i th iu m a r e lo w er th a n th e hydrogen l e v e l s . The p s e u d o p o te n tia l f o r th e p - s t a t e s o f l i t h i u m m ust th u s b e a t t r a c t i v e and so a s in g le p s e u d o p o te n tia l w i l l n o t g e n e r a te b o th t h e s - s t a t e s and p - s t a t e s . B a rd s le y h a s a ls o o b ta in e d th e p a ra m e te r f o r th e ^ -d e p e n d e n t p s e u d o p o te n tia l ( 1 .4 ) f o r li t h i u m . 12 The p o l a r i z a t i o n te rm s i n th e p s e u d o p o te n tia l a r e , aa = 0 .1 9 2 5 a ^ , = 0>11£, a 5 > ^ The rem a in in g p a ra m e te rs a r e a s fo llo w s : d . 0 _?5> f o r th e Yukawa form ( n = l) , Q = 53*524, 0 = 2 .8 9 6 and © = - 3 . 710, 0 = 2 . 676; f o r t h e expos s tp p n e n t i a l form (n=0 ) Q = 1 1 3 . 0 1 0, 0 S S = 3 »6l 6 and Q = - 1 0 . 3 0 , jp 0p = 3 . 569. The p h o to io n iz a tio n c r o s s s e c tio n s f o r lith iu m o b ta in e d f o r t h e Yukawa form and th e e x p o n e n tia l form o f th e p s e u d o p o te n tia l a re t h e same to t h r e e s i g n i f i c a n t f i g u r e s . Thus o n ly one p l o t o f c ro s s s e c t io n v e rs u s p h o to n e n e rg y i s shown and t h i s i s g iv e n i n F ig . 4 i n 17 co m parison w ith th e e x p e rim e n ta l r e s u l t s o f Hudson and C a r te r . The r e s u l t s o f th e c a l c u l a t i o n s f o r li t h i u m a r e i n good agreem ent w ith e x p erim e n t n e a r th e t h r e s h o l d . However, away from t h r e s h o ld th e c a l c u l a t i o n s f a l l o f f f a s t e r th a n e x p e rim e n t. Some p re v io u s t h e o r e t i c a l r e s u l t s a r e g iv e n i n F ig u re 5S te w a rt 25 , S ew ell 26 , and Chang and McDowell 27 have each found th e p h o to io n iz a tio n c ro s s s e c t io n u s in g wave f u n c tio n s c a lc u la te d w ith in Ik t h e H a rtre e -F o c k a p p ro x im a tio n . S e w e ll's r e s u l t s a r e i n good a g r e e m ent w ith e x p e rim e n t, b u t d is a g r e e w ith t h e r e s u l t s o f S te w a rt and o f Chang and McDowell w hich a r e i n a g reem en t. M atese and LaBahn 28 have a l s o done a H a rtre e -F o c k c a l c u l a t i o n , b u t d id n o t r e p o r t t h e i r r e s u l t s w hich w ere f o r a l l p u rp o se s th e same a s Chang and M cD ow ell's re s u lts . Thus i t would seem t h a t t h e r e s u l t s o f S te w a rt g iv e n i n F ig u re 5 a r e a good i n d i c a t i o n o f th e p h o to io n iz a tio n c ro s s s e c tio n o f li t h i u m w ith in th e H a rtre e -F o c k a p p ro x im a tio n . why t h e r e s u l t s o f S ew ell a r e d i f f e r e n t . a r e t h e r e s u l t s Chang and McDowell 27 I t i s n o t known A lso shown i n F ig u re 5 o b ta in e d b y u s in g th e B ru eck n er G o ld sto n e many-body p e r t u r b a t i o n th e o r y , and th e r e s u l t s o f M atese and LaBahn 28 who o b ta in e d t h e p h o to io n iz a tio n c ro s s s e c tio n o f l i t h i u m by m ethod o f p o l a r iz e d o r b i t a l s . C - POTASSIUM A p s e u d o p o te n tia l w hich i s in d e p e n d e n t o f a n g u la r momentum X can b e found f o r p o ta s s iu m . The p a ra m e te rs a r e : 0 = .8 8 715, <*d = 5 .^ 0 a ^ , of = 1 7 .6 s?q9 Q, = 7 . 5656, and d = 1 .5 . The d ip o le l e n g th form o f th e c r o s s s e c tio n a t t h r e s h o l d was 2 . 3U x 10 b u t t h e c ro s s s e c t io n in c r e a s e d m o n o to n ic a lly w ith e n e rg y . -20 2 cm , T h is i s 29 s i m i l a r t o th e r e s u l t s B a te s o b ta in e d f o r a d ip o le p o l a r i z a b i l i t y ■3 g r e a t e r th a n 11 a ^ . B a te s u s e d s o lu tio n s o f t h e H a rtre e -F o c k e q u a tio n s so lv e d by H a r tr e e and H a r tr e e 30 f o r th e bound s t a t e s and f o r t h e continuum s t a t e h e n e g le c te d exchange i n t h e H a rtre e -F o c k e q u a tio n s b u t in c lu d e d a p o l a r i z a t i o n p o t e n t i a l o f th e form 15 V (r) = - P / ( r ^ + d ^ )^ . He found t h a t t h e p o l a r i z a b i l i t y P had a g r e a t I n f lu e n c e on th e b e h a v io r o f t h e c r o s s s e c tio n v e rs u s e n e rg y . H is b e s t ag reem en t w ith ex p erim en t was o b ta in e d f o r P = 10.1+6 a ^ . I n th e p r e s e n t work c a l c u la t io n s w ere made u s in g th e p s e u d o p o te n tia l Q method and v a ry in g th e d ip o le p o l a r i z a t i o n betw een z e ro and 10.1+6 a ^ . But f o r t h e d ip o le le n g th form a minimum was n e v e r o b ta in e d u s in g th e X -in d ep en d en t p s e u d o p o te n tia l. I n t h e c a se o f t h e ^ -d ep en d en t p s e u d o p o te n tia l, th e e n erg y dependence o f th e p h o to io n iz a tio n c r o s s s e c t io n c l o s e ly re sem b les th e g e n e r a l shape o f th e e x p e rim e n ta l d a t a . from B a r d s le y 12 c*d = 5.1+7 a 3 , The p a ra m e te rs o b ta in e d f o r th e Yukawa form ( n = l) o f t h e p s e u d o p o te n tia l a r e : = 12. ajj, d = 1.1+, Qg = 1337.0721+, 0g = 3 . ^ 1+831+, = 115.37211+ and 0^ = 1 . 877117. The q u a d ru p o le p o l a r i z a b i l i t y was chosen so a s t o rep ro d u ce th e c o r r e c t f - s t a t e e n e rg y l e v e l s o f p o ta ss iu m . I t i s somewhat s m a lle r i n m ag n itu d e th a n th e b e s t th e o r e t i c a l c a l c u l a t i o n s w hich g iv e 01 1 =16.2. The ^ -d e p e n d e n t p seu d o - p o t e n t i a l r e s u l t s a r e compared t o t h e e x p e rim e n ta l r e s u l t s o f Hudson and C a r te r 31 i n F ig u re 6 . A lthough t h e cu rv e does have a minimum, th e ag reem en t betw een th e o r y and e x p e rim e n t i s n o t a s good f o r p o ta ss iu m a s i t i s f o r sodium an d l i t h i u m . C a lc u la tio n s w ere a ls o made u s in g d i f f e r e n t v a lu e s f o r th e p o la riz a b ility . Somewhat b e t t e r ag reem en t betw een th e o r y and e x p e r iO ment i s o b ta in e d b y in c r e a s in g t h e p o l a r i z a b i l i t y . F o r = 10.1+6 a Q, a C[ = 0 . 0 , d = 1.1+, n = 1 , Q = 1 2 9 .1 0 1 , 0e = 2 .1 1 7 2 5 , S S T? = 1+0.025, and 0 = 1 . 3921+, th e a d ju s te d d ip o le l e n g t h cu rv e f a l l s ab o u t midway Jtr betw een t h e d ip o le le n g th curve and t h e e x p e rim e n ta l p o in ts i n F ig u re 6 . 16 However, th e p o s i t i o n o f t h e minimum does n o t seem t o be ex trem ely s e n s i t i v e to changes i n th e p o l a r i z a t i o n p a r a m e te rs , c o n tr a r y to th e r e s u l t s o b ta in e d b y B a te s . 29 The c r o s s s e c t i o n i s s e n s i t i v e , th o u g h , t o s m a ll changes i n th e en erg y sp ectru m u s e d t o compute th e p s e u d o p o te n tia l ( c f . t h e b e s t f i t cu rv e L ' i n F ig u re 7 ) . O th er t h e o r e t i c a l r e s u l t s f o r p o ta ss iu m a r e i l l u s t r a t e d i n F ig u re 7* The r e s u l t s o f S heldon 21 and M cGuire 22 a r e o b ta in e d by a d j u s t i n g p a ra m e te rs t o g iv e a b e s t f i t t o e x p e rim e n ta l r e s u l t s . A lso in c lu d e d i n F ig u re 7 i s a b e s t f i t c u rv e o b ta in e d u s in g th e p s e u d o p o te n tia l m ethod. th e p a ra m e te rs in g p a ra m e te rs . The b e s t f i t cu rv e was o b ta in e d b y v a ry in g and 3^ and u s in g B a r d s le y 's v a lu e s f o r t h e re m a in F o r a f ix e d Q^, 3p i s ch o sen so t h a t th e e n e rg y o f th e f i r s t p s t a t e o f t h e pseudo system e q u a ls t h e Up e n e rg y l e v e l o f p o ta s s iu m . F o r eac h s e t o f v a lu e s and 3pj t h e c r o s s s e c tio n i s c a l c u l a t e d and com pared t o e x p e rim e n ta l r e s u l t s a t t h r e s h o l d . F or Qp = 3 0 . and 3p = 1.37117> th e c a lc u la te d r e s u l t i s a p p ro x im a te ly e q u a l t o th e e x p e rim e n ta l r e s u l t o f 1 .2 x 10 and 3 -20 2 cm . For t h i s Qp th e e n e rg y o f t h e ’ second p - s t a t e o f t h e pseudo system i s Xr - . 09U2076 r y , com pared t o -.0938238 r y t h e e n e r g y ^ o f th e 5p l e v e l o f p o ta ss iu m . F o r e n e r g ie s above 2 eV t h e c r o s s s e c tio n o b ta in e d by a d j u s t i n g t h e p s e u d o p o te n tia l a r e i n much b e t t e r agreem ent w ith ex p erim en t th a n p r e v io u s t h e o r e t i c a l c a l c u l a t i o n s . C a lc u la tio n s f o r t h e p h o to io n iz a tio n o f p o ta ss iu m a r e co m p li c a te d b y many f a c t o r s . n e a r th r e s h o l d . The minimum i n t h e c r o s s s e c tio n o c c u rs v e ry The s p i n - o r b i t e f f e c t f o r p o ta s s iu m i s much l a r g e r c th a n f o r sodium . A lso t h e (3p) p (4 s) t r a n s i t i o n s i n p o tassiu m a r e v e ry im p o rta n t i n th e a b s o rp tio n sp ectru m and p ro b a b ly e f f e c t s th e p h o to io n iz a tio n c ro s s s e c tio n f o r th e e n e rg y ran g e d is c u s s e d i n t h i s p a p er. Thus i t i s n o t to o s u r p r i s i n g t h a t t h e r e s u l t s f o r p o ta ssiu m do n o t seem t o be a s good a s th e r e s u l t s o f sodium and li th iu m . SECTION 1-5 CONCLUSION The p h o to io n iz a tio n c r o s s s e c tio n s f o r th e a l k a l i s a r e verys e n s i t i v e to th e wave f u n c tio n s due t o t h e h ig h d eg ree o f c a n c e l l a t i o n w hich o c c u rs i n th e m a trix e le m e n ts , Eq. ( 1 .5 - 1 . 6 ) . s e n s i t i v i t y seems t o he g r e a t e s t i n p o ta ss iu m . T h is P re v io u s t h e o r e t i c a l c a l c u l a t i o n s a r e i n good agreem ent w ith experim ent n e a r th r e s h o ld h u t f o r e n e r g ie s ahove a few e l e c tr o n v o l t s th e c a lc u la t e d c ro s s s e c tio n s d e c re a s e w ith in c r e a s in g e n erg y much f a s t e r th a n th e e x p e rim e n ta l r e s u l t s would i n d i c a t e . The p r e s e n t p s e u d o p o te n tia l c a l c u l a t i o n s a ls o f a l l o f f f a s t e r th a n ex perim ent f o r h ig h e r e n e r g ie s h u t much l e s s so th a n p r e v io u s t h e o r e t i c a l w orks. Thus i t i s fo u n d t h a t p s e u d o p o te n tia ls , e v a lu a te d from e x p e rim e n ta lly d e te rm in e d e n e rg y s p e c t r a , y i e l d q u a l i t a t i v e l y good a p p ro x im a tio n s f o r th e p h o to io n iz a tio n c r o s s s e c t i o n s . A com parison o f th e p s e u d o p o te n tia l method and th e quantum d e f e c t method shows many s i m i l a r i t i e s . I n h o th m ethods, model p a ra m e te rs a r e chosen t o f i t s e le c t e d e x p e rim e n ta l in fo rm a tio n and t h e r e s u l t s u s e d t o p r e d i c t a d d i t i o n a l phenomena. The quantum d e f e c t method h a s th e a d v a n ta g e s o f h e in g more a n a l y t i c a l w ith e s s e n t i a l l y a l l th e a n a l y t i c a l a n a l y s is a lr e a d y done h y S eato n and co w o rk ers. The p s e u d o p o te n tia l m ethod e n t a i l s s p e c i f i c c a lc u la tio n s f o r each system h e in g s tu d ie d . However t h e p s e u d o p o te n tia l method m ig h t h e 18 e x p ec te d t o g iv e " b e tte r r e s u l t s th a n th e quantum d e f e c t m ethod, s in c e th e quantum d e f e c t m ethod i s e q u iv a le n t to s e t t i n g t h e p seu d o p o t e n t i a l e q u a l t o z e ro an d t r u n c a t in g th e wave f u n c tio n s a t some f i n i t e r a d iu s t o a v o id t h e s i n g u l a r i t y a t th e o r i g i n . I n r e g a r d t o p r e d i c t i n g p h o to io n iz a tio n c r o s s s e c t i o n s , a r e l a t i v e l y cru d e m odel p s e u d o p o te n tia l y i e l d s s u p e r io r r e s u l t s o v er th e quantum d e f e c t m ethod f o r a t l e a s t sim p le h y d r o g e n -lik e system s such as th e a l k a l i m e ta ls . T a b le I . C a lc u la te d non-coulom b and quantum d e f e c t p-w ave p h ase s h i f t s i n r a d ia n s E lem ent Na Li K K2 Exp. Ttp. (k 2 ) Quantum D e fe c t ^ ( k 2) Yukawa 0 .0 2 .6 8 k 2.6 8 5 2 .6 8 7 a 0 .1 2 .6 5 0 2.6 5 0 2.6 5 6 0 .2 2 .6 1 8 2.6 1 9 2.632 0 .0 0 . 11+82 0 . 11+81 O.H+88b 0 .1 0 . 151+9 0.151+7 0 .1 5 6 8 0 .2 0 . 1611+ 0.1611 0.1652 0 .0 2 .2 3 5 2 . 23!+° 0 .1 2 . 161+ 2 .1 5 2 0 .2 2 .1 0 0 2.0 7 0 R e f e r e n c e 15 ^ C a lc u la te d from th e t a b l e s i n R e f. 13 cR e fe re n c e 16 21 24 SODIUM 22 20 o Hudson 8 Carter (Experiment) - F ig u re 1 F h o to io n iz a tio n c ro s s s e c tio n s o f sodium , u s in g A -independent p s e u d o p o te n tia l and in c lu d in g p o l a r i z a t i o n e f f e c t s . L and V i n d i c a t e th e le n g th and v e l o c i t y r e s u l t s from t h e f u l l p s e u d o p o te n tia l fo rm alism w h ile P i s th e p se u d o d ip o le le n g th c ro s s s e c tio n d e f in e d b y Eq. ( I . 1 1 ). E x p e rim e n ta l r e s u l t s o f Hudson and C a r te r (R e f. 17) a r e g iv e n b y th e c irc le s . 22 24 SODIUM Hudson & Carter 22 20 OJ E o o CM O X b 2. F ig u re 2 F h o to io n iz a tio n c ro ss s e c tio n o f sodium u s in g th e 4 -d ep en d en t p s e u d o p o te n tia l o f B a rd s le y . L an d V i n d i c a t e th e le n g th and v e l o c i t y forms o f t h e m a trix ele m e n ts f o r t h e Yukawa form o f p s e u d o p o te n tia l. The d a sh e d cu rv e L ' i n d i c a t e s th e le n g th form o f th e m a trix elem en t f o r th e e x p o n e n tia l form o f th e p s e u d o p o te n tia l. E x p e rim en tal r e s u l t s o f Hudson a n d C a r te r (R e f. 17) a r e g iv e n by t h e c i r c l e s . I h I I I I i i i i i i r SODIUM o Hudson 8 Carter [Burgess a Seaton °_° 0 ° S ' ' x ' CM 16 \C o o p e r s\ i Sheldon i f Seaton Burgess 8 Seaton 1 2 1, 4 I I 6 I I 8 10 e(eV) F ig u re 3 The c i r c l e s i n d i c a t e t h e e x p e rim e n ta l r e s u l t s o f Hudson and C a r te r (R e f. 17) • The o th e r c u rv e s a r e th e t h e o r e t i c a l c a lc u la tio n s o f S e a to n (R ef. 1 8 ) , B u rg ess and S eato n (R e f. 1 6 ), Cooper (R ef. 19)> Boyd (R ef. 2 0 ) , an d S heldon (R e f. 2 1 ) . M -l i n d i c a t e s th e c u rv e f o r McGuire (R e f. 22) w ith A=l8 .6 and M-2 i n d i c a t e s th e l a t e r r e s u l t s o f McGuire (R ef. 23) u s in g th e HermanS k illm an p o t e n t i a l . 2k LITHIUM 180 —o 160 o Hudson 8 Carter 100 80 0 2 4 6 8 10 12 14 16 18 e(eV) F ig u re k F h o to io n iz a tio n c r o s s s e c tio n s o f li t h i u m , u s in g th e Yukawa form o f B a r d s le y 's p s e u d o p o te n tia l. L and V i n d i c a t e th e le n g th and v e l o c i t y forms o f th e m a tr ix e le m e n ts . E x p e rim e n ta l r e s u l t s o f Hudson and C a r te r (R ef. 17) a r e g iv e n by th e c i r c l e s . T" I T I \ ° /^ \ 180 l - o/ / J 160 E • 140 o o X r I1 "T V m' C M \ ^ i o \ \ \ ■ \ 1 / \ ° \ ° 1 \ \ * a rl T I CM I 'I LITHIUM . ' /Stew art O I O \ I CM | I ° \ ^ i • I \ n «i- I ' \ \0 \ o 120 A ° V ° \ \\ * 100 ° \ \\ \ ° o Hudson 8 C arter \ \Sewell * ML-V ° ML-L o o 80 i 0 2 l 4 l I 6 i l 8 I 10 12 14 16 18 e(eV) F ig u re 5 O th er c a l c u l a t i o n s o f p h o to io n iz a tio n c r o s s s e c t io n o f l i t h i u m . The d ash ed c u rv e i s t h e le n g th form o f th e H a r tr e e Fock r e s u l t o f S te w a rt (R e f. 2 5 ) . The s h o r t d ash es r e p r e s e n t t h e le n g th form o f th e H a r tr e e Fock r e s u l t o f S ew ell (R e f. 2 6 ). The v e r t i c a l b a r s m arked CM i n d i c a t e th e e x te n t o f th e le n g th and v e l o c i t y c a l c u la tio n s o f Chang and McDowell (R ef. 27) > u s in g many body p e r t u r b a t i o n th e o r y . ML-L and ML-V i n d i c a t e th e le n g th and v e l o c i t y r e s u l t s o f M atese and LaBahn (R e f. 2 8 ) , u s in g th e m ethod o f p o la r iz e d o r b i t a l s . E x p e rim e n ta l r e s u l t s o f Hudson and C a r te r (R e f. 17) a r e g iv e n by c ir c l e s . 26 POTASSIUM 80 E o Hudson 8 Carter cvi O 20 o // 0 2 4 6 8 e(eV) F ig u re 6 F h o to io n iz a tio n c r o s s s e c t io n o f p o ta ss iu m , u s in g th e p seu d o p o t e n t i a l o f B a rd s le y . L and V i n d i c a t e th e le n g th and v e l o c i t y forms o f t h e m a trix e le m e n t. The c i r c l e s i n d i c a t e th e e x p e rim e n ta l r e s u l t s o f Hudson and C a r te r (R e f. 31) u s in g t h e v ap o r p r e s s u r e d a ta o f Nesmeyanov. 27 POTASSIUM 80 CM 60 £ o o Hudson ft Carter “ CM o b 40 ' u 20 Sheldon McGuire 0 2 4 6 8 10 12 e(eV) F ig u re 7 F h o to io n iz a tio n c r o s s s e c tio n o f p o ta ssiu m . The s h o r t dash cu rv e i n d i c a t e s th e a d ju s te d quantum d e f e c t r e s u l t s o f S heldon (R e f. 2 1 ). The d a sh cu rv e i n d i c a t e s th e r e s u l t s o f McGuire (R ef. 22) f o r &=6.20. L ' i s a b e s t f i t cu rv e o b ta in e d i n t h i s p a p e r by a d ju s tin g th e p seu d o p o t e n t i a l p a r a m e te rs . The e x p e rim e n ta l r e s u l t s o f Hudson and C a r te r (R e f. 31) a r e g iv e n b y t h e c i r c l e s . PART II - PHOTODETACHMENT OF NEGATIVE HYDROGEN ION 28 SECTION II-1 INTRODUCTION The n e g a tiv e hydrogen io n , H~ i s th e p r i n c i p l e so u rc e o f o p a c ity i n th e s o l a r atm osphere. T h is a s tr o p h y s ic a l im p o rtan ce o f n e g a tiv e io n s was f i r s t n o te d b y W ild t 32 i n 1939* W ild t p o in te d o u t t h a t i n an atm o sp h ere c o n ta in in g b o th m e ta l and hydrogen atoms th e i o n i z a t i o n o f t h e m e ta l atoms can s u p p ly th e e l e c t r o n s n e c e s s a r y f o r th e fo rm a tio n o f n e g a tiv e hydrogen i o n s . The e l e c t r o n a f f i n i t y o f h y d ro g en i s due t o in c o m p le te s c re e n in g o f th e n u c le u s and to th e p o l a r i z a t i o n o f th e h y d ro g en ic c o re . A lth o u g h a n e u t r a l atom e x e r t s an a t t r a c t i v e f o r c e on an e l e c t r o n , t h e r e a r e a l im i t e d number o f s t a t i o n a r y s t a t e s f o r a tta c h e d e l e c t r o n s . T h is i s due t o th e s h o r t ra n g e o f th e e f f e c t i v e a t t r a c t i v e f i e l d i n w hich th e e l e c t r o n moves. p le l i m i t s th e number o f a v a i l a b l e s t a t e s . A lso t h e P a u li P r i n c i F or th e n e g a tiv e hydrogen io n t h e r e i s o n ly th e one bound s t a t e ; e x c it e d bound s t a t e s do n o t e x is t. Thus t h e ato m ic a b s o rp tio n c o e f f i c i e n t i s i d e n t i c a l t o th e c r o s s - s e c t i o n f o r th e p hotodetachm ent o f an e l e c t r o n . I n 19^0, u s in g th e pho to d etach m en t r e s u l t s o f M assey and B a te s , S tro m g ien 3I4. was a b le to produce a th e o r y o f th e s o l a r atm osphere w ith no p r i n c i p a l d i s c r e p a n c ie s . However W ild t* s 35 i n v e s t i g a t i o n on th e t h e o r e t i c a l r e l a t i o n betw een th e c o lo r -te m p e r a tu re and th e e f f e c t i v e te m p e ra tu re o f s t a r s d id have d is c r e p a n c ie s . 29 The maximum o f th e 33 p h o to d etach m en t cu rv e needed t o "be moved from 4000A tow ard l a r g e r w a v e le n g th s. By 1959 th e p h o to d etach m en t cu rv e was known p r e c i s e enough f o r a s tro n o m ic a l p u r p o s e s . The maximum o f t h e p h o to d etach m en t curve was a p p ro x im a te ly 4 .5 x 10 -17 2 cm and l o c a te d n e a r 8200A. The im provem ent i n t h e photodetachm ent r e s u l t s was m ain ly due to C handrasekhar and h i s c o -w o rk ers. C h andrasekhar was th e f i r s t t o p o in t o u t t h e need f o r more v a r i a t i o n a l p a ra m e te rs i n th e ex p an sio n o f t h e bound s t a t e wave f u n c tio n o f H . He a ls o n o te d t h a t th e d ip o le v e l o c i t y photodetachm ent r e s u l t s a r e more s ta b l e t o d i f f e r e n t bound s t a t e s th a n th e le n g th r e s u l t s and th u s a r e p ro b a b ly more a c c u r a t e . The m ain m o tiv a tio n o f t h e work a f t e r i 960 was n o t n e c e s s a r i l y t o o b ta in more a c c u r a te p h o to d etach m en t r e s u l t s , b u t r a t h e r t o show th e c a p a b i l i t i e s o f o t h e r t h e o r ie s i n p r e d i c t in g a c c u r a te p h otodetachm ent r e s u l t s . T h is i s one re a s o n t h a t th e p r e s e n t work was u n d e rta k e n . N esb et h a s fo rm u la te d a p ro c e d u re t h a t i s r e a d i l y a p p lie d t o atom ic s c a t t e r i n g p ro b le m s. S e i l e r , O b e ro i, and C a lla w a y ^ have a p p lie d t h i s m ethod t o t h e slow c o l l i s i o n s o f e l e c t r o n s and p o s i t r o n s w ith ato m ic h y d ro g en . They c a lc u la t e d th e a p p r o p r ia te phase s h i f t s and c r o s s s e c t i o n s . U sing th e N esbet p ro c e d u re o r a lg e b r a ic c lo s e c o u p lin g m ethod one can a ls o d e te rm in e th e wave f u n c tio n o f t h e s c a t t e r e d e l e c t r o n i n an a n a ly tic form . I f an a c c u r a te wave f u n c tio n i s known many o th e r p r o p e r tie s o f th e s c a t t e r e d e le c tr o n can be e a s i l y o b ta in e d . Thus i t i s o f i n t e r e s t t o i n v e s t i g a t e th e 31 a c c u r a c y o f a wave f u n c tio n g e n e r a te d by t h e a l g e b r a i c c lo se c o u p lin g m ethod. U sing th e knowledge t h a t th e p h otodetachm ent r e s u l t s a r e e q u a l i n th e l e n g th , v e l o c i t y , and a c c e l e r a t i o n d ip o le a p p ro x im a tio n f o r e x a c t wave f u n c tio n s , one can u s e photodetachm ent c a lc u la tio n s fo r H t o d e te rm in e th e a c c u ra c y o f t h e wave fu n c tio n s g e n e r a te d b y th e a l g e b r a ic c lo s e co u p lin g m ethod. Once th e wave f u n c tio n s were found t o be a c c u r a t e , th e work was e x te n d e d i n t o t h e e n e rg y r e g io n where i n e l a s t i c p ro c e s s e s a re p o s s i b l e an d a m u ltic h a n n e l fo rm alism i s need ed . n=2 l e v e l t h e r e e x i s t s a re s o n a n c e . J u s t above th e I t s c o n tr ib u ti o n to th e p h o to a b s o r p tio n c r o s s s e c tio n i s i n v e s t i g a t e d . The p l a n o f P a r t I I i s a s fo llo w s : i n S e c tio n I I -2 th e a n a l y s i s f o r d e te rm in in g th e wave f u n c tio n s i s g iv e n ; i n S e c tio n I I -3 t h e m ethod o f d e te rm in in g pho to d etach m en t c r o s s - s e c t i o n s i s d is c u s s e d ; i n S e c tio n II-U t h e p h otodetachm ent r e s u l t s i n t h e n o n -reso n an ce r e g i o n a r e d is c u s s e d ; i n S e c tio n I I -5 th e p h o to d etach m en t r e s u l t s f o r t h e ^P re so n a n c e a r e d is c u s s e d and t h e c o n c lu s io n s a r e p re s e n te d . SECTION II-2 WAVE FUNCTIONS A - Bound S t a t e I n , t h i s s e c t i o n , th e wave f u n c tio n s w hich a r e needed f o r c a l c u l a t i n g th e p h o to d etach m en t c r o s s s e c t io n o f H a re d is c u s s e d . The p ro c e d u re f o r c a l c u l a t i n g th e bound s t a t e wave f u n c tio n o f H" i s d is c u s s e d i n p a r t A and i n p a r t B t h e N esb et m ethod f o r o b ta in in g th e s c a t t e r e d wave f u n c tio n i s d e s c r ib e d . T h ree d i f f e r e n t bound s t a t e s a r e u s e d i n t h i s w ork. The a u th o r o b ta in e d two bound s t a t e s , one w hich in c lu d e s th e th r e e h y d ro g en c h a n n e ls I s , 2 s , and 2p and one w hich in c lu d e s f o u r c h a n n e ls I s , 2 s , 2 p , and 2p. The 2p i s t h e pseudo s t a t e o f B urke, G a lla h e r , and G e ltm a n ^ w hich was chosen t o re p ro d u c e t h e f u l l p o l a r i z a b i l i t y o f th e g ro u n d s t a t e o f H. R |= = - 0 .9 6 6 r ( l + '| r ) e r + .3^0 r e I I.1 ^ A s i x c h a n n el bound s t a t e o b ta in e d by M atese and O beroi Uo w hich c o n s i s t s o f t h r e e hy d rogen s t a t e s I s , 2 s , and 2p and t h r e e pseudo s t a t e s 3 s , 3P> and 3d was a l s o u s e d . t o b e o f th e form 32 The p s e u d o - s ta te s were chosen 33 R3 s = Ns ( l+ a sr ) e " V Rr— = N r ( l + a r ) e 3P P P + ^ -TLr P + X0 R_ 2p 2p I I.2 p ®3d ' V where th e and m u tu a lly o rth o n o rm a l. <1+V > e a r e such t h a t th e s i x b a s is f u n c tio n s axe The p s e u d o - s ta te p a ra m e te rs w ere o b ta in e d ; * y u s in g c o n v e n tio n a l v a r i a t i o n a l te c h n iq u e s t o m inim ize th e en erg y o f H“ . The tw o - e le c tr o n H a m ilto n ia n i s g iv e n b y H ( l ,2 ) = I I.3 -V22 - 2/ r i - 2/ r 2 +2/ r 12 . A tom ic u n i t s a r e t o b e u sed c o n s i s t e n t l y th ro u g h o u t t h i s work; th e e n e rg y b e in g m easured i n R ydbergs and $ = 1 , m = and e2= t The t r i a l wave f u n c tio n i s o f th e form I 1” ( 1 ,2 ) = [1+P12] p r ( l ) F r (2 ) hS ^ O ls, ) . II. k H ere H and T axe c h an n el in d ic e s and d e s ig n a te s e t s o f quantum numbers r — (n p , A p,S pj^jL ,S jtr) I I.5 3b w here: 1. rip i s t h e p r i n c i p a l quantum number o f th e ato m ic s t a t e ; 2. j£p>Sp, s p e c if y th e o r b i t a l a n g u la r momentum an d s p in o f th e ato m ic s t a t e ; 3. 4 i s th e o r b i t a l a n g u la r momentum o f th e s c a t t e r e d p a rtic le ; U. L, S , M^, Mg, it s p e c if y t h e t o t a l o r b i t a l and s p in a n g u la r momentum o f th e two p a r t i c l e sy stem , t h e i r components on t h e a x is o f q u a n t i z a t i o n , and t h e t o t a l p a r i t y r e s p e c tiv e ly . T hese q u a n t i t i e s a r e c o n se rv e d i n t h e c o l l i s i o n . P12 i s t h e sp ace exchange o p e r a to r . The f u n c tio n Y c o u p le s th e a n g u la r momentum o f th e e l e c t r o n and th e atom I I .6 The s in g le p a r t i c l e wave f u n c tio n F p ( r) i s expanded i n th e form Fr (r) = S t>rnf rn(r) n II.7 w here t h e f r _ a r e n o rm a liz e d S l a t e r o r b i t a l s f I I .8 The in d e x n d e s ig n a te s th e number o f b a s i s f u n c tio n ( S l a t e r o r b i t a l s ) c o n s id e re d . CKr<100a . The c o e f f i c i e n t s §n a r e chosen so a s t o span th e ran g e 35 The R i t z v a r i a t i o n a l method i s u s e d t o s o lv e d th e e ig e n v a lu e problem HB = ESB. I I.9 H ere H i s t h e H a m ilto n ia n m a trix and S i s th e o v e r la p m a trix . B r>J i s a v e c to r o f t h e ele m e n ts b ^ . The s m a lle s t e ig e n v a lu e o f th e m a tr ix e q u a tio n i s t h e e n e rg y o f H~ and th e c o rre s p o n d in g e ig e n v e c to r i s th e bound s t a t e wave f u n c t io n . A l o c a l minimum f o r th e energy o f H- i s o b ta in e d b y t r e a t i n g t h e s m a lle s t e ig e n v a lu e a s a n o n - lin e a r f u n c tio n o f t h e p s e u d o - s t a t e p a ra m e te rs a ^ , U sing t e n b a s is fu n c tio n s f o r each o f t h e co u p le d c h a n n e ls M atese and O beroi o b ta in e d -1 .0 5 3 7 Ryd. f o r th e e n e rg y o f H . The e x a c t v a lu e i s -1 .0 5 5 5 Ryd. k2 36 B - Continuum S t a t e The v a r i a t i o n m ethod p ro p o se d b y N esbet i s u se d to c a lc u la t e s i n g l e t continuum p-w ave e l e c t r o n hydrogen wave f u n c tio n s . t r i a l wave f u n c t io n i s ta k e n t o b e o f th e form The 37 pi N pi T (1,2) = 2 Yr (1,2) 11.10 r=i 1 T' b e in g th e i n c i d e n t c h a n n e l, and T a f i n a l c h a n n e l. i f ' (1 , 2) i s *fcll th e component o f t h e t o t a l wave f u n c tio n i n th e T c h a n n el. T h is f u n c tio n may b e e x p re s s e d as i f ’ (1,2) = x f (1,2) + ^ ^ ( 1 , 2 ) + qT jA ^ I ^ ) 11.11 where Xp i s a n o rm a liz a b le f u n c tio n and AQp and A1 p a r e f u n c tio n s h a v in g a s p e c i f i e d a s y m p to tic form . T1 The f u n c tio n Xp rosy e x p re s s e d a s r ' „ _\ 7 /, j t yL (1,2) = r Jef (1 ,2)0 “ b=l 1 11.12 D w here b i s t h e b a s i s in d e x and r % p = p Mp i f <2 ) r Ila 3 fp c The n o rm a liz a b le b a s i s f u n c tio n s 'IL (r) = [* jl o ] 2r p „ e” b . r(2Je+3) And above t h e th r e s h o l d f o r th e e x c i t a t i o n o f th e n=2 s t a t e s , two a d d i t i o n a l b a s i s f u n c tio n s a r e in c lu d e d o f th e form ( l - e "^r )^+2 s i n ( k p r ) / r 2 II. i h ( l - e "^**)^*2 c o s ( k p r ) / r 2 . The f u n c tio n Rp i s t h e h y d ro g en !c r a d i a l f u n c tio n . I n t h i s work t h r e e s t a t e s a r e in c lu d e d t h e I s , 2s , an d 2p s t a t e s o f hyd ro g en . The o p e r a to r P^2 i s t h e two p a r t i c l e exchange o p e r a to r . The a s y m p to tic f u n c tio n s may h e e x p re s s e d a s 1+P1? Mr Ai r ~ <-7§ ^ Rr^r l^ Si ^ r , r 2^ YL,J&p,J& The fu n c tio n s SQ a n d * “ 0 ,1 * a r e p r o p o r ti o n a l to r~"Ls in ( k p r - r e s p e c t i v e l y , a t l a r g e d is ta n c e . SQ(r,r) = kp(L- e~ -Gtt/ 2), The s p e c i f i c form s u s e d were ^ (k p r) I I .1 6 S1 ( r , r ) = k r ( l - e “ P r) 2‘e+1Nje(k p r) 1 1 .1 7 and i n w hich an d N^ a r e s p h e r ic a l B e s s e l and Neumann f u n c tio n s . q u a n tity 3 i s an a r b i t r a r y p a ra m e te r. in tro d u c e d so t h a t t h e f u n c tio n o r ig in . The f a c t o r ( l - e w i l l behave a s r ••Si* 2^*1 ) is c lo s e t o th e F o r SQ t h e f a c t o r ( l - e ” ^r ) 2'^+'1' i s in c lu d e d s o le l y f o r convenience i n c a l c u l a t i n g th e n e c e s s a r y i n t e g r a l s . The 38 SHORT RANGE COEFFICIENTS - C ^ ' P The wave f u n c tio n a s i t s ta n d s h as th r e e unknowns, a^p . P , FP TP P and C^ . However th e C^ can h e e x p re s s e d i n term s o f c^p and r* P P q^P . And e i t h e r QfQp o r c^p can h e d e f in e d t o h e a d e l t a f u n c tio n 6pp, le a v in g o n ly one unknown. I n t h e Kohn V a r ia tio n a l Method P P orQp = 6^ , , a n d i n th e I n v e rs e Kohn V a r i a ti o n a l Method a£p = 6p p , . The t r i a l wave f u n c tio n vF m ust s a t i s f y th e S c h r o d in g e r e q u a tio n i n th e suhspace o f H i l h e r t space spanned hy th e h a s is r f u n c tio n s T]^. T h is c o n d itio n i s u s e d t o d e te rm in e th e s h o r t ran g e TP p c o e f f i c i e n t s C^ i n term s o f th e a s y m p to tic c o e f f i c i e n t s Q^p . The i n i t i a l c h a n n e l in d ex P w i l l he s u p p re s s e d i n th e rem ain d er o f t h i s d is c u s s io n . The demand t h a t th e t r i a l wave f u n c tio n Y s a t i s f y th e S c h ro d in g e r e q u a tio n i n th e su h sp ace spanned h y th e s h o r t ran g e r f u n c tio n s 7]^ le a d s t o th e system o f l i n e a r e q u a tio n s . E < © ^ (l,2 )|H -E |x p (l,2 )+ Q ropAo p ( l , 2 ) + a Lp A1 p ( l ,2 ) > = 0 , I I.1 8 f o r a c h a n n e l in d e x v = 1 , . . . , N and h a s i s in d e x a = l , . . . . , n v . An e q u iv a le n t e x p re s s io n f o r Eq. I I . 1 8 i s £ E MP® c f = -E ( a MPJ + a. MP^ ) , . ah v oq aS jLq aC ’ s h q I I . 19 3l) where Mg = (« P |H -s |e g ), n .a o MS = ( ^ l H-E|Ao q ) , I n th e re m a in in g d is c u s s io n p , q , and s a r e c h an n el i n d i c e s . a and b a r e b a s i s i n d i c e s . t h a t th e c o e f f i c i e n t s And The p ro b lem can be s im p lif ie d by n o tin g can b e e x p re s s e d a s l i n e a r com bination o f a 's , cf = E (cv c f 1 + a. a ? ? ) Hd q v oq bo lq b l where f o r p = 1 , . . . , N and a = l , . . . n S £ 1 1 .2 1 Jfcr = -< ^ |H -E |A o q > I I . 22 E E < # |H - E |S g > C ^ = -< # |H - E |A 1(1>. These 2N inhom ogeneous l i n e a r e q u a tio n s o f Eq. (1 1 .2 2 ) may b e s o lv e d by two m eth o d s. One method i s an e ig e n v a lu e problem and th e o th e r method c o n s i s t s o f m a trix in v e r s io n . ko I n th e e ig e n v a lu e m ethod one f i r s t o b ta in s t h e homogeneous s o lu tio n . The homogeneous e q u a tio n may b e e x p re s s e d a s f jjj (“ S - V X X * " °- 1 1 -2 3 Eq. (1 1 .2 3 ) i s an e ig e n v a lu e problem o f d im en sio n En_ . P = The e ig e n f u n c tio n s , y i.2 ) - 2 £ ( 1 ,2 ) = E ! £ ( 1 ,2 ) 1 1 . Zk r span t h e same su b sp ace o f H i l b e r t sp ace a s th e b a s i s f u n c tio n s T)^ T hus-E q. 1 1 .2 2 may a l s o b e e x p re s s e d a s , E E < £ |H - e | £ > £ | - - < ^ M | A o q > 1 1 .2 5 E E < £ | h - e | £ > £ J = -< ’^ |H -E |A l q >. g I t i s c o n v e n ie n t t o in tr o d u c e th e f u n c tio n s 4i q = £ , °bi an d t o e x p re ss them i n te rm s o f t h e e ig e n f u n c tio n s 11-26 T h is le a d s t o t h e e x p re s s io n | E < £ Ik-E | £ , >Kjt i . - < £ |h - E |Al q > X I . 27 kl f o r i = 0 ,1 where n -28 S in c e t h e e ig e n f u n c tio n s ¥a a r e ta k e n t o h e o rth o n o rm al Kc k “ ( E - E ^ E ^ I h - E ^ iq > II> 2 9 and ‘i q = § Mcd 1 = °>1 ' H -3 0 Sf ( 1 , 2 ) ] . lq lq ' J 1 1 .3 1 V The f u n c tio n Xg may "be e x p re s s e d a s XV( 1 ,2 ) = 2[cvV $s ( 1 ,2 ) + s' ’ q oq o q ' ol av Thus t h e s h o r t ra n g e c o e f f i c i e n t s a r e e x p re s s e d i n term s o f t h e \) a s y m p to tic c o e f f i c i e n t s an d th e e ig e n f u n c tio n s and e ig e n e n e r g ie s Ea hy Eq. I I . 30 and E q. 11.31* E q. 1 1 .2 1 can a l s o e a s i l y b e s o lv e d b y u s in g m a tr ix in v e r s io n i n Eq. 1 1 .2 2 . H ere I Z -3S <£? = - S n il ra ' 'b a Mr « aC 1+2 ASYMPTOTIC COEFFICIENTS - or? iq The asy m p to tic c o e f f i c i e n t s a r e d e te rm in e d v a r i a t i o n a l l y . The v a r i a t i o n a l f u n c tio n a l i s ta k e n t o he i CTV - <V '|h - e | t v> = 1 1 < ^ ( i , 2 ) |h - e | 1 1 .3 3 »q( i , a ) > . The t r i a l f u n c tio n was e x p re s s e d a s f v( i , a ) = s ^ ( i , a ) I I . 3^ * > , 2 ) = X > , 2 ) + % SA0S(1»2) + “ L V 1 ’25- F o r th e v a r i a t i o n a l c a l c u l a t i o n i t i s c o n v e n ie n t t o e x p re ss th e t r i a l f u n c tio n Y w ith component i n ch an n el s a s * > , 2) = f E 1 1 .3 5 where th e fu n c tio n s Y? a r e d e f in e d h y iq l j q ( l , 2 ) = * Jq ( l , 2 ) + V i q ( 1 ’ 2 ) - 1 1 .3 6 U3 Then th e v a r i a t i o n a l f u n c tio n a l can b e e x p re s s e d as 1 = 2 2 cF *MP? o£ i j pq iP i d dq 1 1 .3 7 I 1 1 .3 8 or crv = 2 2 o? * IP , i p iP i v w here Xi v Mi j “iq » 1 ,d = 0,15 P,<1 = 1 1 ,3 9 The m a tr ix elem en ts MPjjj- a r e d e f in e d b y MPq = 2 2 |H - E 6 ) 00 r s v op1 rs r s 1 oq7 = 2 (S |H - E 6 1 ^ ) , s ' p 1 ps p s 1 o q 77 MPq- = 2 2 { ' f jH - E 6 1 ^ ) ol r s ' op' rs r s 1 lq 7 = 2 (S |H - E 6 \ t ) , s v p ' ps p s ' l q 7’ MPq = 2 2 |h - E 6 ) lo r s ' l p 1 rs r s 1 oq7 = 2 (C |H - E 6 ), s P ps p s 1 oq ’ MPq = 2 2 |H - E 6 l ^ 5 ) 11 r s ' l p 1 rs r s 1 xq7 = 2 (C |H - E 6 K ) . s ' p 1 ps p s 1 lq 7 II.U O The m a tr ix elem en ts MPq can b e d e te rm in e d by e i t h e r o f two m ethods. I f th e e ig e n v a lu e problem h a s b e e n s o lv e d th e n And i f t h e e ig e n v a lu e p roblem h a s n o t b een s o lv e d , th e M fr a r e e a s i l y d e te rm in e d u s in g th e fo llo w in g e q u a tio n s , MPq = m*§ - 2 s. 00 bb r s ab < II "2- •s II V U sing t h e i d e n t i t y 4 bb f t - r s2 ab \ •e * MPq - 2 2 M1" CS r s ab Ca "S - Mpq - 2 2 CC r s ab *2 Ca where k 2 = E-E P P II th e v a r i a t i o n a l f u n c tio n a l may b e e x p re s s e d a l t e r n a t i v e l y a s I aV = E (ij dq I f th e c o e ffic ie n ts a (J Vdq + k ( 6,-Of0 * - 6, o? * )o % ) S d l oq. do l q jq II y and or a r e in d e p e n d e n t, from E q. 1 1 .3 8 Si ~ a* Sa ip II xi v and from E q . I I . ^5 Si (TV _0 * rr-= I j d aV dq dCT + Thus th e f i r s t o r d e r v a r i a t i o n o f I 61 av =SZ ip O * k (6 a q d l oq <• CT*\ - 6 ar ), do l q II i s g iv e n i n g e n e r a l b y 6a°* i f + E E i j * 6c^ ip iv i q d^ dq II _ + E q , / 0 * c V O' * «. V N k (or 6a . - a 6a ) . q ' oq iq lq oq U sing th e Kohn V a r i a t i o n a l M ethod th e R m a trix i s d e f in e d as V where ■ C ^ /k P )4 Ypq n U6 an d c? = 6 oq qp q = 1 , . . . ,N 1 1 .5 1 where p i s th e i n i t i a l c h a n n e l in d e x . F o r th e above d e f i n i t i o n o f th e R m a tr ix , th e f i r s t v a r i a t i o n o f th e v a r i a t i o n a l f u n c tio n a l s im p l i f i e s c o n s id e ra b ly . c i e n t s o! a r e r e a l and th e v a r i a t i o n s o f 0P v a n is h . oq A ll c o e ffi E q. I I . U 8 re d u c e s t o 61 k = E l j %, 6y + S I ? 6y%i + ov p I V 'o p q l o Vq k 6yvw o vo I I . 52 The i n t e g r a l s I ^ v t h a t o c c u r i n Eq. 1 1 .5 2 can a l l s im u lta n e o u s ly b e re d u c e d t o z e ro b y an a p p r o p r ia te c h o ic e o f c o e f f i c i e n t s . U sing E q s. I I . 1+3, I I . 5 0 , 1 1 .5 1 ■ < + S '® Thus th e c o e f f i c i e n t s Y^° Yvq s a t i s f y t h e s e t o f l i n e a r e q u a tio n s 2 M?? v l o ) = - M?V . q 11 Vq lo I f 1^ H - 53 1 1 .5 5 = 0 f o r a l l p , q th e n E q. 1 1 .5 2 becomes •tto v - V w P ■ °- I T -56 T h is g iv e s a p p ro x im a te ly s t a t i o n a r y v a lu e s o f th e c o e f f i c i e n t s I I - 57 YVq - ^ - f 1 A q ) K o + ? M® Y^ 5 >• T h is co m p letes th e c a l c u l a t i o n o f v = y . However t h e r e a r e d i f f i c u l t i e s w ith s p u rio u s s i n g u l a r i t i e s f o r th e Kohn method i f |m®J( e ) | sh o u ld have i s o l a t e d z e r o e s . com puting e lem e n ts o f th e r ”'L These can "be a v o id e d by m a tr ix f o r th e s e i s o l a t e d en erg y re g io n s . A m ethod, sim ilar* t o t h a t u s e d f o r th e R m a tr ix , can be u s e d f o r com puting e le m en ts o f R~^ m a tr ix . I n v e r s e Kohn b y N e s b e t. t o second H u lth e n m ethod. f o llo w s . T h is m ethod i s c a l l e d th e I n t h e s in g le - c h a n n e l problem i t re d u c e s A b r i e f ’ e q u a tio n o u t l i n e o f th e m ethod 1 1 • 58 1(8 ‘^ov + 1 V v o ) * 0 \ ^ PVq “ ^ + + | »S S p u rio u s s i n g u l a r i t i e s a l s o o c c u r i n t h e I n v e r s e Kohn M ethod, if |M ^ (E ) | h a s i s o l a t e d z e r o e s . However a p o in t o f s i n g u l a r i t y i n t h e Kohn m ethod i s a lm o st n e v e r a s i n g u l a r i t y i n t h e I n v e r s e Kohn m ethod an d v ic e v e r s a . a v o id e d . Thus th e s p u rio u s s i n g u l a r i t i e s can he N e sb et s u g g e s ts u s in g t h e Kohn fo rm u la when th e r a t i o o f d e te rm in a n ts i s l e s s th a n u n i t y , and u s in g th e I n v e r s e Kohn fo rm u la when t h i s r a t i o i s g r e a t e r th a n u n i t y . T h is ty p e o f s p u rio u s s i n g u l a r i t y d id n o t c r e a t e an y d i f f i c u l t i e s i n th e p r e s e n t work. SECTION I I -3 MULTICHANNEL JHOTOBETA.CHMENT H aving d e te rm in e d th e n eed ed wave f u n c tio n s i n t h e p re v io u s s e c t i o n , i n t h i s s e c t io n we w i l l d e s c r ib e how th e s e wave f u n c tio n s can b e u s e d to d e te rm in e t h e p h o to d etach m en t c r o s s s e c tio n . B ecause i n e l a s t i c p r o c e s s e s a r e to b e a llo w e d , a m u ltic h a n n e l fo rm alism i s n eed ed . I4.Q H enry and L ip sk y J have d e s c r ib e d a th e o r y f o r m u ltic h a n n e l p h o to io n iz a tio n w hich in c lu d e s c o u p lin g betw een f i n a l - s t a t e c h a n n e ls . They a p p lie d t h e fo rm alism t o t h e p h o to io n iz a tio n o f neon. M atese and O beroi a l s o u se d t h i s fo rm alism i n com puting th e p hotodetachm ent o f H~ below th e n=2 t h r e s h o ld . The d e s c r i p t i o n w hich fo llo w s i s t h a t fo u n d i n t h e p a p e r b y M atese and O b e ro i. 1+0 The t o t a l c ro s s s e c t i o n , w ith c o n tr ib u tio n s from a l l open c h a n n e ls i s g iv e n by = E CTr ^ r 1 1 1 .6 1 where *r(3) ■f “% 4 and Ap.p, —(l-iR)pp, -1 (l+iR)p,p -1 k9 -^ A rr" 4 % H ere j = 1 ,2 ,3 i n d i c a t e s th e le n g th , v e l o c i t y o r a c c e l e r a t i o n d ip o le a p p ro x im a tio n . 1% P and P i n d i c a t e open f i n a l s t a t e c h a n n e ls . R i s t h e r e a c ta n c e m a tr ix and i s d e te rm in e d b y Eq. ( I I . ^9) • f i = N 2 2 ( Yf Yi or=+l + h lf,£ r i s a ch a n n el in d e x , h 2f,je+CT 1 1 .6 2 C<FYf l ° ( j ) lF Yi > < u Y K Yf jla Yi Yf Yi > u i s e i t h e r a I s , 2s , 2p re d u c e d h y d ro g en ic s t a t e o r a re d u c e d pseudo s t a t e wave f u n c tio n . U sing th e n o ta tio n o f S e c tio n I I - 2 , t h e red u ced f i n a l s t a t e s in g le p a r t i c l e wave P f u n c tio n Fp i s Fr'“ + “or (i-e 'Pr)2*+1J.e(V > 11.6 3 + o [p ( l - e ' ^ J ^ N ^ C k p r ) ] . 51 N i s t h e bound s t a t e n o r m a liz a tio n , ^=\ ;f=^ 2 i, an^ o p e r a to r o j ^ ^-P 0-1-0 i s g iv e n by 0=1 ^ - <t[ 4 + £ (l+ ff)]/r j= 2 I I . 6k 3=3 F o r e n e r g ie s below th e n=2 t h r e s h o ld , o n ly th e I s c h an n el i s o p en . I n t h i s c a s e Eq. ( I I . 6 l ) becomes ^ ) = | 2 f f ao 2 ( ^ ) 3 - 2 J w here 6 i s th e P p h ase s h i f t and „(J_) Cos2 6 f i i s th e I s c h a n n e l. 1 1 .6 5 SECTION n -k PHOTODETACHMENT RESULTS AND CONCLUSIONS BELOW THE INELASTIC THRESHOLD I n t h i s s e c t io n t h e p h o to d etach m en t c ro s s s e c tio n i s c a lc u la t e d u s in g E q . ( I I . 6 5 ) an d t h e wave f u n c tio n s d e s c r ib e d i n S e c tio n I I - 2 . The p h o to n e n e r g ie s c o n s id e re d i n t h i s s e c t io n (A>113l) a r e n o t l a r g e enough t o p ro d u ce a n i n e l a s t i c c o l l i s i o n , th u s o n ly a s in g l e ch an n el fo rm alism i s n eed ed . The p u rp o se o f t h i s s e c t io n i s t o d e m o n stra te t h a t t h e wave f u n c tio n s o b ta in e d u s in g t h e a l g e b r a i c c lo s e c o u p lin g m ethod a r e s u f f i c i e n t l y a c c u r a te t o compute th e p h otodetachm ent c r o s s s e c tio n o f H . F i r s t th e p h o to d etach m en t c ro s s s e c tio n i s computed f o r th e same continuum wave f u n c tio n and t h r e e d i f f e r e n t bound s t a t e s . The continuum s t a t e i s a t h r e e s t a t e ex p an sio n composed o f t h e I s , 2 s , 2p h y d ro g en s t a t e s . e a rlie r. The t h r e e bound s t a t e s a r e th o s e d e s c rib e d I n H g u r e 8 th e d ip o le v e l o c i t y p h o to d etach m en t r e s u l t s a r e shown. Curve 1 i n F ig u re 8 r e p r e s e n ts t h e r e s u l t s u s in g th e s i x c h an n e l bound s t a t e o f M atese and O b e ro i. I n F ig u re 9 t h i s same cu rv e i s shown t o b e i n good agreem ent t o a s i m i l a r c a l c u l a t i o n by I4L. D oughty and F r a s e r . D oughty and F r a s e r computed th e p h o to d e ta c h ment c r o s s s e c t io n o f H" u s in g th e s e v e n ty p a ra m e te r S chw artz bound s ta te . They u s e d a t h r e e s t a t e c lo s e c o u p lin g c a lc u la tio n f o r th e continuum s t a t e . N ote i n F ig u re 8 t h a t t h e f o u r s t a t e ex p an sio n which in c lu d e s th e 2p pseudo s t a t e y i e l d s r e s u l t s which a r e 52 53 s i g n i f i c a n t l y b e t t e r th a n t h e r e s u l t s o b ta in e d u s in g th e th r e e s t a t e ex p a n sio n . The p h o to d etach m en t r e s u l t s i n th e d ip o le le n g th a p p ro x i- i m atio n a r e shown i n F ig u re 10. I n F ig u re 11 th e s i x s t a t e e x p an sio n o f M atese and O beroi i s u se d t o compute b o th th e bound and th e continuum s t a t e . A lso shown i n F ig u re 11 a r e th e r e s u l t s o f D oughty, F r a s i e r , and McEachran. They u s e d t h e S chw artz bound s t a t e o f H ". They c a lc u la t e d th e continuum s t a t e u s in g th e c lo s e c o u p lin g m ethod w ith th e f i r s t s i x h y d ro g e n ic s t a t e s in c lu d e d i n th e e x p an sio n o f th e wave f u n c tio n . F ig u re s 8 -11 i l l u s t r a t e th e a lr e a d y known f a c t s t h a t th e d ip o le v e l o c i t y a p p ro x im a tio n y i e l d s th e b e s t p h o to d etach m en t c ro s s s e c tio n s , and t h a t th e p h o to d etach m en t r e s u l t s a r e n o t a s s e n s i t i v e to th e con tinuum s t a t e a s th e y a r e th e bound s t a t e . F ig u re s 8-11 sh o u ld a ls o e s t a b l i s h t h a t a c c u r a te wave f u n c tio n s can be o b ta in e d by u sin g th e . a l g e b r a i c c lo s e c o u p lin g m ethod. However t h e r e i s one d i f f i c u l t y t h a t a r i s e s i n u s in g t h e a lg e b r a ic c lo s e co u p lin g m ethod. If. th e t o t a l e n e rg y o f th e sy stem i s v e ry c lo s e t o one o f th e e ig e n v a lu e s o f E q. (1 1 .2 3 ) th e n th e wave f u n c tio n s e x h i b i t s p u rio u s reso n an ce s tru c tu re , s p u rio u s i n t h e se n se t h a t t h i s e i g e n s t a te d o e s n 't e x i s t i n th e r e a l o r a c t u a l p h y s ic a l problem an d th u s th e reso n an ce s tr u c t u r e a l s o d o e s n 't e x i s t i n t h e r e a l p ro b lem . T h e re fo re th e en erg y r e g io n o f th e n o n - p h y s ic a l e ig e n v a lu e s sh o u ld be a v o id e d . I f an energy r e g io n c o n ta in in g a n o n -p h y s ic a l e ig e n v a lu e n eeds t o be in v e s tig a te d , th e e ig e n v a lu e sp ectru m i s e a s i l y s h i f t e d by changing th e e x p o n e n tia l c o e f f i c i e n t s o f th e b a s i s s e t . A d e s c rip tio n o f t h i s d if f ic u lty in r e g a r d t o th e p h otodetachm ent o f H an d O b ero i. 1*0 i s g iv e n i n th e p a p e r by Mate SECTION I I -5 1P RESONANCE I n th e e l e c t r o n hydrogen problem t h e r e e x i s t s a j u s t above th e n=2 t h r e s h o ld . reso n a n c e B ecause th e n=2 c h a n n e ls a r e open, th e p roblem o f d e te rm in in g t h e s i n g l e t p-wave f u n c tio n i s more d i f f i c u l t i n t h i s e n e rg y r e g io n . The s o u rc e o f th e d i f f i c u l t y i s th e c o u p lin g o f th e d e g e n e ra te 2s and 2p s t a t e s o f ato m ic h y d ro g en , which g iv e s r i s e t o a lo n g -ra n g e o f f - d ia g o n a l d ip o le p o t e n t i a l . b6 E. R. S m ith , R. S . O b e ro i, and R .J.W . H enry have i n v e s ti g a te d t h i s problem b y c o n s id e rin g a two ch an n el model problem which con t a i n e d an o f f d ia g o n a l d ip o le p o t e n t i a l . They found t h a t i n th e model p ro b lem , f o r d e g e n e ra te e n e r g ie s , t h e a s y m p to tic s o lu ti o n o f t h e wave f u n c tio n co u ld n o t b e a c c u r a te ly ap p ro x im ated u s in g s p h e r ic a l B e s s e l and Neumann f u n c tio n s . fo r th is . They su g g e ste d two means o f c o r r e c tin g One method was t o in c lu d e e n e rg y -d e p e n d e n t s in u s o id a l term s in th e b a s is s e t. Two such a d d i t i o n a l te rm s w ere added i n t h e p r e s e n t work (Eq. I I . 1 4 ). The a d d itio n o f th e en erg y -d e p e n d e n t s in u s o id a l te rm s means t h a t th e e ig e n v a lu e e q u a tio n (Eq. 1 1 .2 3 ) m ust be so lv e d f o r e v e ry e n e rg y , w hereas b e f o r e i t needed t o be s o lv e d o n ly once. S in c e th e a l t e r n a t e method o f m a trix in v e r s io n i s much q u ic k e r , one would n a t u r a l l y want t o s o lv e th e problem u s in g t h a t p ro c e d u re . However, one would l i k e t o know th e e ig e n v a lu e sp ectru m , a s m entioned i n th e l a s t s e c t io n . Knowing th e e ig e n v a lu e sp ectru m i s even more 55 im p o rta n t i n th e i n e l a s t i c w ork, b e c a u se t h e en erg y -d ep en d en t s in u s o id a l term s seem t o cause a c l u s t e r i n g o f e ig e n v a lu e s a b o u t th e en erg y b e in g c o n s id e re d . The p ro b lem o f n o n -p h y s ic a l e ig e n e n e r g ie s does n o t seem t o a r i s e i n c a l c u l a t i n g t h e A=1 c ro s s s e c tio n s o f th e l s - 2 s and l s - 2 p tra n s itio n s . T hese c r o s s s e c tio n s a r e g iv e n i n F ig u re 12 a lo n g w ith lj.7 th e r e s u l t s o f T a y lo r an d B urke. T a y lo r and Burke u se d th e c l o s e c o u p lin g m ethod f o r two e x p a n s io n s, one in c lu d in g t h r e e s t a t e s and t h e o th e r t h r e e s t a t e s p lu s tw e n ty c o r r e l a t i o n te rm s . A lth o u g h th e maximums i n t h e c r o s s s e c tio n o c c u rre d a t t h e same e n e r g ie s , t h e v a lu e s o f th e maximums a r e s l i g h t l y l e s s i n th e p r e s e n t work. T h is m ight be c au sed by n o t in c lu d in g enough s in u s o i d a l term s i n th e b a s i s e x p a n sio n . U8 The agreem ent betw een t h e p r e s e n t work and t h a t o f T a y lo r and Burke seems t o i n d i c a t e t h a t t h e p r e s e n t work h a s b e e n ex ten d ed above n=2 th r e s h o l d c o r r e c t l y . Thus t h e wave f u n c tio n s a r e u se d t o compute t h e c o n tr ib u tio n o f th e "4? re so n a n c e t o th e p h o to detachm ent c r o s s s e c t i o n . The p h o to d etach m en t c ro s s s e c tio n f o r th e reso n a n c e was d e term in e d u s in g th e bound s t a t e o f M atese an d O b ero i. The f i n a l s t a t e was o b ta in e d u s in g t h e a lg e b r a ic c lo s e c o u p lin g method w ith t h r e e s t a t e s ( l s - 2 s - 2 p ) in c lu d e d i n t h e e x p a n sio n . S ix te e n b a s is f u n c tio n s w ere u s e d i n th e e x p an sio n o f th e s in g le p a r t i c l e f u n c tio n F ^ , f o u r te e n S l a t e r ty p e and two h arm o n ic. The ph o to d etach m en t c r o s s s e c tio n was com puted u s in g th r e e d i f f e r e n t s e t s o f s ix te e n b a s is f u n c tio n s . F ig u re 13 r e p r e s e n ts a b e s t f i t cu rv e f o r th e t h r e e s e t s o f ph o to d etach m en t d a t a . The d a ta p o in t s i n th e energy r e g io n 57 ( .7 5 - • 76 R y d .) do n o t f i t a smooth c u rv e . However t h e same smooth curve g iv e s a good b e s t f i t cu rv e t o a l l t h r e e s e t s o f d a t a . The a u th o r f e e l s t h a t t h e g iv e n cu rv e i s a c c u r a te t o w ith in 10$. A lso hg in c lu d e d i n F ig u re 13 a r e th e v e l o c i t y r e s u l t s o b ta in e d b y Macek u s in g th e bound s t a t e 2 0 -p a ra m e te r H y lle r a a s - ty p e wave f u n c tio n f o r H o f H a rt an d H e rz b e rg and a l s - 2 s - 2 p c lo s e c o u p lin g f i n a l s t a t e . The d i f f i c u l t y i n o b ta in in g a sm ooth curve i s a t t r i b u t e d to two re a s o n s . One i s t h e d i f f i c u l t y w ith a n e ig e n v a lu e b e in g to o c lo s e to th e t o t a l e n e rg y E . o f f p a ra m e te r P. The o th e r s o u rc e o f d i f f i c u l t y i s th e c u t A good c u t o f f p a ra m e te r f o r c h a n n e l one i s P = k^ o r a p p ro x im a te ly = 0 .8 a~ ^. W hereas a good c u t o f f p a ra m e te r f o r channel fo u r i s P = kg o r .05 a Q^* u sed f o r a l l c h a n n e ls . The same c u t o f f p a ra m e te r was B e ta was ch o sen to be th e a v e ra g e o f k^ and kg o r P e q u a l a p p ro x im a te ly .^ 5 - .5 0 a ”1 . T h is P i s as sm a ll a s p o s s ib le i f one i s t o o b ta in r e a s o n a b le r e s u l t s f o r th e I s c h a n n e l. However i t i s much to o l a r g e , t o a c c u r a te ly c u t o f f t h e s p h e r ic a l Neumann f u n c tio n 7]g i n channel f o u r . T h is i s i l l u s t r a t e d i n T a b le I I , which shows t h e c o n t r ib u t i o n t o th e p h otodetachm ent c r o s s s e c t io n o f a c o l l i s i o n w here t h e h y d ro g e n ic e l e c t r o n i s l e f t i n th e e x c ite d 2p s t a t e o f hy d ro g en an d t h e o th e r e l e c t r o n i s s c a t t e r e d w ith a n g u la r momentum j6=2 . I n summary, a c c u r a te wave f u n c tio n s can be o b ta in e d u s in g t h e A lg e b ra ic C lo se C o u p lin g M ethod. However th e ap p e a ra n c e o f s p u rio u s OQ s i n g u l a r i t i e s a s n o te d by M atese and O beroi i n t h e i r p a p e r seems t o be even a l a r g e r s o u rc e o f d i f f i c u l t y f o r e n e r g ie s above th e n=2 58 th r e s h o ld . A lso a s in g le c u t - o f f p a ra m e te r f o r a l l open ch an n els sh o u ld n o t b e u sed f o r e n e r g ie s v e r y n e a r th e th r e s h o ld . Work i s p r e s e n t l y underw ay to make th e s e two changes in th e program : t o make th e c u t o f f p a ra m e te r e q u a l to t h e wave v e c to r o f th e c h a n n e l an d t o in c lu d e two a d d i t i o n a l harm onic t e r n s i n th e b a s is s e t. When t h i s i s com pleted th e work w i l l be e x ten d ed t o s ix c h a n n e ls . TABLE II PHOTODETACHMENT CROSS SECTIONS: FINAL STATE CHANNEL FOUR (n^=2 , / = 1 , X=2 ) CVI LENGTH a x 1 0 ~^cm ^ BASIS A B 0 .7 5 1 0 .0 5 0 .0 9 0 .7 5 2 0 .7 9 0 .2 9 5.55 0 .7 5 3 0 .3 ^ 0 .3 2 0 .3 8 0 .7 5 ^ 0 .6 5 0 .1 1 0 .5 2 0 .7 5 5 0 .6 0 0 .9 0 0 .6 6 0 .7 5 6 0 .7 7 0.7^- 1 .2 2 0 .7 5 7 0 .3 9 0.1*7 0 .3 7 0 .7 5 8 0 .3 7 o.M* 0 .3 6 .0 .7 5 9 0 .3 3 0 .3 7 3 .2 0 c B a s is A: §. = [ .0 0 5 , .0 1 5 , . 0 3 , .0 7 5> «1> *3* »6 , .8, 1 .1 , 1 .3 , 1 . 6 , 2 . , 3 . , 5.] B a s is B: §. = [ .0 0 5 , .0 1 , .OU, .0 7 , .2 , .4 , . 6 , . 8 , 1 . 2 , l.k, 1 . 8 , 2 . 5 , 3 . 5, ^. 5] B a s is C: §. = [ .0 0 5 , .0 1 5 , «03> »075> *1> *3> »^5> . 6 , . 8 , 1 .3 , 1 . 6 , 2 . , 3 . , 5 .] DIPOLE VELOCITY 6 BOUND STATE ls -2 s-2 p _ ls -2 s -2 p -2 p ls - 2 s - 2p-s-p-3 " CONTINUUM STATE Is - 2 s —2p 5 4 3 2 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 X (A) F ig u re 8 F hotodetachm ent .c ro ss s e c tio n s i n th e d ip o le v e l o c i t y a p p ro x im a tio n f o r H u s in g an a lg e b r a ic c lo s e co u p lin g t h r e e s t a t e continuum wave f u n c tio n and t h r e e d i f f e r e n t hound s t a t e s . ON o DIPOLE VELOCITY CONTINUUMSTATE ls-2s-2p 6 BOUND STATE Is - 2s - 2p- 5p Is-2s-2p-5-p-J o o SCHWARTZ (70) 5 4 3 2 2000 4000 6000 8000 10000 12000 14000 16000 18000 X (A°) F ig u re 9 F hotodetachm ent c ro s s s e c tio n s o f H i n th e d ip o le v e l o c ity ap p ro x im a tio n . The dashed curve i s th e r e s u l t u s in g a f o u r channel "bound s t a t e . The s o l i d curve i s th e r e s u l t u s in g th e s i x channel "bound s t a t e . The c i r c l e s a r e th e r e s u l t o f Doughty and F r a s e r u s in g th e Schw artz "bound s t a t e . DIPOLE LENGTH CONTINUUM STATE Is -2s-2p 6 BOUND STATE _ Is-2s-2p- 2p Is-2s-2p-s-p-3 ° ° SCHWARTZ (70) cm 4 (10 5 3 2 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 X(A°) F ig u re 10 Photodetachm ent c ro s s s e c tio n s o f H i n th e d ip o le le n g th a p p ro x im a tio n . The dashed curve i s th e r e s u l t u s in g a f o u r channel hound s t a t e . The s o l i d curve i s th e r e s u l t u s in g th e s ix channel hound s t a t e . The c i r c l e s a r e th e r e s u l t s o f Doughty and F r a s e r u s in g th e Schw artz hound s t a t e . ON ro DiPOLE LENGTH AND VELOCITY CONTINUUM STATE BOUND STATE Is- 2s-2p-*-p-<J Is-2 s-2p-s-p-(J Is - 2*-2p-3s-3p-3d SCHWARTZ (70) “ 3 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 X(A°) F ig u re 11 S ix ch an n el photodetachm ent c ro s s s e c tio n s o f H~ i n th e d ip o le le n g th and v e l o c i t y ap p ro x im a tio n . The s o l i d cu rv es la b e le d L and V a r e th e le n g th and v e l o c i t y r e s u l t s u s in g a s ix ch an n el hound s t a t e and a s ix ch an n el continuum s t a t e . The dashed cu rv es la b e le d L and V a r e t h e le n g th and v e l o c i t y r e s u l t s o f D oughty, F r a s e r , and M cEachran. They u se d a d o s e co u p lin g continuum wave f u n c tio n w ith s i x hydrogen s t a t e s in c lu d e d , and th e y u se d th e Schw artz bound s t a t e . 6H 0.6 Is, 2 s , 2 p CLOSE COUPLING Is, 2 s , 2 p + 20 CORRELATION TERMS • • • • I s , 2 s , 2 p ALGEBRAIC CLOSE COUPLING 0.5 0.4 0.3 o a 0.2 s - 2p) X 0.75 0.755 0.76 0.765 ELECTRON ENERGY IN RYDBERGS Figure 12 Partial P Cross Sections of the ls-2s and ls-2p Transition above the n=2 Threshold: the dots are this work and the dashed and solid curves are the results of Taylor and Burke. CVJ I I I I I I 3 3.0 CO s 111 CO CO CO o 2.0 oc o o im £C o co m 1.0 < g o X Q. .70 .72 .74 .75 .76 .78 .80 k 2 ( Ryd) F ig u re 13 The photodetachm ent c ro s s s e c tio n o f H i n th e energ y r e g io n o f th e l p re so n a n c e . The s o l i d cu rv e i s th e b e s t f i t curve o f t h i s w ork. The dashed curve i s th e r e s u l t o f Macek. Macek u se d a th r e e s t a t e c lo s e co u p lin g continuum s t a t e and th e tw en ty p a ra m e te r hound s t a t e wave f u n c tio n o f H a rt and H erzb erg . REFERENCES 1. R. W. LaBahn and R. L. S m ith , F hys. L e tt e r s 30A, *+7 ( 1969) . 2. J . C. P h i l l i p s and L. K leinm an, P hys. Rev. 116, 207 (1959)* 3. N. R. K e s tn e r , J . J o r t n e r , M. H. Cohen and S . A. R ic e , P h y s. Rev. 1^0 , A56 ( 1965) . *+. J . C. T u lly , P hys. Rev. l 8l , 7 ( 1969)* 5. J . C allaw ay and P. L aghos, P hys. Rev. 187, 192 ( 1969) . 6. B. S c h n e id e r, M. W einberg, J . T u lly , and R. S . B e rry , P h y s. Rev. 182, 133 ( 1969) . 7. B. J . A u s tin , V. H e in e ,a n d L. J . Sham, Phys. Rev. 127, 276 ( 1962) . 8. I . V. A barenkov and V. H e in e , P h i l . Mag. 1 2 , 529 (1965)* 9. H. A. B eth e and E. F . S a l p e t e r , Quantum M echanics o f One-and T w o -E lectro n Atoms (Academic P r e s s , New Y ork, 1957)* 10. PP* 295 f f E . C le m e n ti, IBM J . R es. D evelop. £ , 2 (195*+) » M. Synek, A. E. R a in is , and Clemens C. J . R oothaan, Phys. Rev. lU l, 17*+ ( 1966) . 11. See f o r exam ple, A D alg arn o , Advan. P h y s. 1 1 , 2 8 l ( 1962) ; J . L a h ir i and A. M a k h ir ji, J . P hys. S oc. J a p a n 21, 1178 ( 1966) ; . P h y s. Rev. l U l, *f28 ( 1966) ; 1=&, 386 ( 1967) ; 155, 2b (1 9 6 7 ). 12. J . N. B a rd s le y ( p r i v a t e com m unication). 13. F. S. Ham, S o lid S t a t e P h y s ic s , V ol. 1 , (e d . S e it z and T u rn b u ll) (Academic P r e s s , New Y ork, 1 9 5 5 ), PP* 127* lU . W. P ro k o fjew , Z. P h y sik 58, 255 (1929)* 15. M. J . S e a to n , P ro c . P hys. Soc. A, 70, 620 (1 9 5 7 ). 67 16. A. B urgess and M. J . S e a to n , Mon. N o t. Roy. A s tr . Soc. 120, 121 (I960). 17* R* D. Hudson and V. L. C a r t e r , J . O pt. S oc. Am. £ 7 , 651 (1 9 6 7 ). 18. M. J . S e a to n , P ro c . Roy. S oc. A, 2 0 8 , Ul8 ( 1951) . 1 9 . J . W. C ooper, P h y s. Rev. 1 2 8 , 68l (1962) . 20. Anne H. Boyd, P la n e ta r y and Space S c ie n c e 12 , 729 (196*0* 21. J . W. S h e ld o n , 22. J . A p p l. P hys. £ 7 , 2928 ( 1966) . E. J . M cGuire, P hys. Rev. l 6l , 51 (1967)* 2 3 . E. J . M cG uire, P h y s. Rev. 179, 20 ( 1968) . 2k. F . Herman and S . S k illm a n , A tom ic S t r u c tu r e C a lc u la tio n s ( P r e n t i c e - H a l l , I n c . , Englewood C l i f f s , New J e r s e y , 1963)* 25. A. L. S te w a r t, P ro c . P h y s. S oc. A, 6 7 , 917 (195*0* 26. K. G. S e w e ll, J . O pt. S oc. Am. 57, 1058 ( 1967) . 27. E. S . Chang and M. R. C. McDowell, P hys. Rev. 176, 126 ( 1968) ; ( p r i v a t e com m unication). 28. J . J . M atese and R. W. LaBahn, P h y s. Rev. 188, 17 ( 1969)* 29. D. R. B a te s , P ro c . Roy. S oc. A, 188, 350 (l9*+7)* 30. D. R. H a r tr e e and W. H a r tr e e , P ro c . Camb. P h i l . Soc. 3U, 550 (1 9 3 8 ). 31. R. D. Hudson and V. L. C a r t e r , J . O pt. S oc. Am. 57, 1*»-71 (1 9 6 7 ). 32. R. W ild t, Ap. J . 8 2 , 295 (1 9 3 9 ). 33. H. S . W. M assey and D. R. B a te s , A s tro p h y s . J . 3U. B. S tro m g ren , F e s t s c h r i f t f u r E l i s S tro m g ren , 35* R* W ild t, Ap. J . 2 1 , k7 (19*^1). 202 C1^ 0)* p . 218, 19**0. 68 36. S . C h an d rasek h ar and M. K. K ro g d a h l, A s tro p h y s . J . 0 8 , 205 (1943) j S. C h a n d ra se k h ar, A s tro p h y s . J . 102, 223 (1 9 4 5 ); S. C h a n d ra se k h ar, A s tro p h y s . J . 102, 395 ( 1 9 ^ 5 )j S. C h a n d rasek h a r, A s tro p h y s , J . 128, 114 ( 1958) ; S. C h a n d ra sek h a r, D. D. E l b e r t , A s tro p h y s . J . 1 2 8 , 633 (1 9 5 8 ). 37. R. K. N e s b e t, P h y s. Rev. 3J2> 60 (1969 ) . 38. G. J . S e l l e r , R. S . O b e ro i, and J . C allaw ay , P hys. R ev. A, 3., 2006 (1 9 7 1 ). 39. P . G. B u rk e, D. F . G a lla h e r , and S . G eltm an, J . P hys. B: Atom. M olec. P h y s. 2 , 1142 ( 1969) . 40. J . J . M atese and R. S . O b e ro i, ( to b e p u b lis h e d ) . 41. J . J . M a te se , ( p r i v a t e com m unication). 42. C. L. P e k e r i s , P h y s. Rev. 112, 1649 (1 9 5 8 ). 43. R. J . W. H enry and L. L ip sk y , P h y s. Rev. 153» 51(1987)* 44. N. A. D oughty and P . A. F r a s e r , A tom ic C o lli s io n P ro c e s s e s ( e d . b y M. R. C. M cDowell), p . 527* 45. N o rth -H o lla n d , Amsterdam. N. A. D oughty, P . A. F r a s e r , and R. P . M cEachran, Mon. D ot. R. A s t r . S oc. 1 3 2 , 255 (1 9 6 6 ). 46. E . R. S m ith , R. S . O b e ro i, and R .J.W . H enry, ( to b e p u b lis h e d ) . 47. A. J . T a y lo r and P . G. B u rk e, P ro c . P h y s. S oc. £ 2 , 336 ( 1967) . 48. R .J.W . H enry ( p r i v a t e com m unication). 49. J . Macek, P ro c . P h ys. S oc. 365 ( 1967) . 69 VITA R ich a rd Lee S m ith , son o f B roadus P. and L ouise S m ith , was h o rn i n H ouston, Texas on O ctober 6 , 19^3• H ouston H igh S chool i n P asad en a, T ex as. He a tte n d e d South Upon g ra d u a tio n he e n r o lle d a t B ay lo r U n iv e r s ity and re c e iv e d h i s B .S . from B ay lo r U n iv e r s ity i n th e S p rin g o f 1966 where he r e c e iv e d a d o u b le m ajor i n math and p h y s ic s . An a d d i t i o n a l y e a r o f g ra d u a te s tu d y i n p h y s ic s was s p e n t a t B a y lo r. On May 2 7 , 19^7 h e m a rrie d E liz a b e th Ann V a r n e ll. In th e F a l l o f 1967, he e n te r e d th e g ra d u a te sch o o l o f L o u is ia n a S t a t e U n iv e r s ity . On May 7 , E liz a b e th and R ich ard were b le s s e d w ith a baby g i r l , Carey Ann. R ich ard Lee Sm ith i s p r e s e n t l y a c a n d id a te f o r th e d eg ree o f D o cto r o f P h ilo so p h y i n th e D epartm ent o f P h y sic s and Astronomy a t th e 1971 Summer Commencement.
© Copyright 2026 Paperzz