CALCULUS 2 – BC PRACTICE TEST #2 Name DAY 1 – SECTION A – NO CALCULATOR 1. 2. Period 5 5 ⌠ ƒ(x) dx = 2. What is ⌡ ⌠ 2 ƒ(x) – 1 dx ? Let ƒ(x) be a function such that ⌡ 1 1 A) 0 B) 1 C) 2 D) 3 E) 4 π 6 What is ⌠ ⌡ cos x(sin2 x + 1)dx 0 A) 13 24 B) 0 C) 13 3 24 3e3t A) 3e3t B) cos t D) 3. dy If x = sin t and y = e3t, what is ? dx 4. lim 5. Where does the function 2x2 + sin 2x have a point of inflection? π π π π A) x = B) x = – C) x = 0 D) x = E) x = – 4 4 3 3 6. A function ƒ(x) is equal to 7. 4 ⌠ x(5x + 3) dx ? A) 7.5 B) 12 What is ⌡ 1 8. What is lim 9. What is the particular solution to the differential equation sin 2 (3x) is x→0 x2 A) 0 B) 1 C) 3 D) 9 –13 24 E) –13 3 24 C) 3e3t cos t D) cos t E) e3t cos t E) undefined x2 – 4 for all x > 0 except x = 2. In order for the function to be continuous at x–2 x = 2, what must the value of ƒ(2) be? A) –4 B) –2 C) 0 D) 2 E) 4 3 x 4 − 3x x→∞ 2x 2 + cos x A) ∞ B) undefined x2 x2 – 1 B) cos y = 3 – 2 2 2 2 x x D) sin y = – 2 E) sin y = 2 – 2 2 A) cos y = C) 64 C) D) 70.4 E) 76 3 2 D) 0 E) 6 dy x = that passes through the point (2,0) ? dx sin y C) cos y = x2 – 3 10. Which of the following improper integrals diverge? π/2 1 ∞ 2 sin x ⌠ 1 A) ⌠ dx B) dx C) xe− x dx dx D) All of the above E) None of the above ⎮ 1– cos x ⎮ ∫ ⌡ ⌡ 1–x 4 0 0 ________________________________________________________________________ CALCULUS 2 – BC PRACTICE TEST #2 Name DAY 1 – SECTION A – NO CALCULATOR Period 5 1 14 23 C) D) E) 3 3 3 6 ________________________________________________________________________ ⎛π ⎞ sin ⎜ + h ⎟ − 1 ⎝2 ⎠ 12. What is lim h→0 h ⎛π⎞ A) ƒ ' ⎜ ⎟ , where ƒ(x) = cos x B) ƒ ' (1), where ƒ(x) = sin x C) ƒ ' (1), where ƒ(x) = cos x ⎝2⎠ ⎛π⎞ ⎛π⎞ D) ƒ ' ⎜ ⎟ , where ƒ(x) = sin 2x E) ƒ ' ⎜ ⎟ , where ƒ(x) = sin x 2 ⎝ ⎠ ⎝2⎠ ________________________________________________________________________ 2 13. What is the area under the curve y = x e(x ) between x = 0 and x = 2? e4 1 e4 A) – B) C) e4 – 1 D) 4e4 E) 4e4 – 4 2 2 2 ________________________________________________________________________ 11. If ƒ(x) = x 2x – 1 , what is ƒ ' (5)? A) 3 B) ∞ 14. Which of the following guarantee that ∑ f (n) converges? n=0 1 1 (I) lim f (x) = 0 (II) ƒ(x) < 2 (III) 2 < ƒ(x) when x ≥ 1. x→∞ x x A) (I) only B) (II) only C) (I) and (II) only D) (I) and (III) only E) (I), (II), and (III) ________________________________________________________________________ 2x 15. What is the absolute maximum value of the function y = 2 ? x + 16 1 1 A) 4 B) – C) 0 D) E) –4 4 4 ________________________________________________________________________ 16. Let f(x) be a function with a continuous derivative on the interval (0, 5) such that ƒ ' (0) = 3, ƒ ' (1) = 2, ƒ ' (2) = –3, ƒ ' (3) = –4, ƒ ' (4) = 1. Which of the following must be true about ƒ(x)? (I) ƒ(x) has a critical point between x = 1 and x = 2 (II) ƒ(x) has a critical point between x = 0 and x = 1 (III) ƒ(x) has a critical point between x = 2 and x = 3 A) (I) only B) (III) only C) (I) and (II) only D) (I) and (III) only E) (I), (II), and (III) ________________________________________________________________________ 17. Let ƒ be a continuous function on the interval [–1,3]. If ƒ(–1) = 9 and ƒ(3) = 1, then the Mean Value Theorem guarantees that A) ƒ ' (0) = 0 B) ƒ ' (c) = –2 for some c between –1 and 3 C) ƒ ' (c) = 2 for some c between –1 and 3 D) ƒ = 5 for some c between –1 and 3 E) ƒ < 0 for all c between –1 and 3 ________________________________________________________________________ 18. A young tree is measured every week. Each week, it is taller than it was the week before, but it has grown a lesser amount. If h(t) is the height of the tree, which of the following is positive? (I) h(t) (II) h ' (t) (III) h '' (t) A) (II) only B) (I) and (II) only C) (I) and (III) only D) (II) and (III) only E) (I), (II), and (III) ________________________________________________________________________ CALCULUS 2 – BC PRACTICE TEST #2 Name DAY 1 – SECTION A – NO CALCULATOR Period 6x 19. On what interval is the function y = 2 increasing? x +9 A) (– , 0) B) (–3, 0) C) (0, ) D) (0,3) E) (–3,3) ________________________________________________________________________ x 20. Let ƒ(x) = . Which of the following are true? x+1 (I) ƒ(x) has exactly one local maximum (II) ƒ(x) has a point of inflection at x = 0 (III) ƒ(x) has a vertical asymptote at x = – 1 A) (I) only B) (III) only C) (I) and (III) only D) (II) and (III) only E) (I), (II), and (III) ________________________________________________________________________ ∞ (x − 2)n 21. What is the radius of convergence of the series ∑ ? A) 0 B) 1 C) 2 D) 3 E) n! n=0 ________________________________________________________________________ 6 22. What is the volume of the solid obtained by rotating the region between y = and y = 4 – x around the x+1 3 3 ⌠ ⎛ 6 ⎞2 ⌠⎛ 6 ⎞ x-axis? A) π⎮ (4 – x)2 – ⎜ ⎟ dx B) π⎮⎜x + 1⎟ 2 – (4 – x)2 dx x + 1 ⎝ ⎠ ⎠ ⌡ ⌡⎝ 1 1 3 2 2 2 6 6 ⎛ ⎞ ⎛ ⎞ ⌠ ⎛ 6 ⎞ C) π ∫ (4 − x)2 − ⎜ (4 – x) – ⎜ dx E) 2π ⎮(4 – x) – ⎜ dx D) 2π ⌠ ⎟ ⎟ dx ⌡ ⎟ ⎝x + 1⎠ ⎝x + 1⎠ ⎝ x + 1⎠ ⌡ 1 1 1 ________________________________________________________________________ 23. This is a slope field for which of the following differential equations? 4 2 –2 1 –1 –2 –2 –4 dy dy dy x dy x2 E) dy = 2 = xy2 B) = xy C) = D) = y dx x y dx dx dx y dx ________________________________________________________________________ A) CALCULUS 2 – BC PRACTICE TEST #2 Name DAY 1 – SECTION A – NO CALCULATOR Period This graph of ƒ(x) is for problems 24 and 25. t 24. Let g(t) = ⌠ A) 0 B) 6 C) 12 D) 18 E) unknown ⌡ ƒ(x) dx. What is g(6)? 0 -------------------------------------------------------------------------------------------------------25. Where is ƒ ' (x) = 0? (I) When x = 1 (II) When x is between 4 and 5 (III) When x = 2 A) (I) only B) (II) only C) (I) and (II) only D) (II) and (III) only E) (I), (II), and (III) ________________________________________________________________________ 9x + 10 26. What is ⌠ dx? ⎮ 2 ⌡ 2x – x – 6 ln|2x + 3| ln|2x + 3| A) 4 ln|x – 2| + + C B) 4 ln|9x + 10| + +C 2 2 C) 3 ln|x – 2| + ln|2x + 3| + C D) 3 ln|9x + 10| + 2 ln|2x + 3| + C E) 4 ln|x – 2| + 2 ln|2x + 3| + C ________________________________________________________________________ 27. A particle is moving along the x–axis. Its position at time t > 0 is e2–t. What is its acceleration when t = 2? A) e B) 1 C) 0 D) –1 E) –e ________________________________________________________________________ 28. A particle, initially at position (1,2), moves with velocity (t, sin(π t)). Where is the object when t = 2? 1 ⎞ 1 ⎞ 1 ⎞ ⎛ ⎛ ⎛ A) ⎜1,2 + B) ⎜3,2 + C) ⎜3,2 – ⎟ D) (1,2) E) (3,2) ⎟ ⎟ π ⎠ π ⎠ π ⎠ ⎝ ⎝ ⎝
© Copyright 2026 Paperzz