Written Homework 6 Problem 1 ∑M C = 0 ⇒ −6 ( P1 ) + 12 (T ) − 16 ( P2 ) + 24 (T sin 30˚) = 0 1 2 P1 + P2 = 4.20 kip 4 3 T= ∑F = 0 ⇒ C x − T cos 30˚= 0 Cx = 3 T = 3.64 kip 2 ∑F = 0 ⇒ T + T sin 30˚+C y − P1 − P2 = 0 Cy = 5 P1 = 4.50 kip 8 x y Problem 2 û BC = −5iˆ − 9 ĵ 2iˆ − 9 ĵ + 5 k̂ 4 iˆ − 9 ĵ − 4 k̂ . û BD = . û BE = . 106 110 113 T = 6 kN. h = 90 m. ∑F x = 0 ⇒ FAx + (TBCx + TBDx + TBEx ) = 0 2 4 ⎞ ⎛ −5 FAx = −T ⎜ + + ⎟ = −0.488 kN ⎝ 106 110 113 ⎠ ∑F y ( ) = 0 ⇒ FAy + TBCy + TBDy + TBEy = 0 9 9 ⎞ ⎛ −9 FAy = −T ⎜ + + ⎟ = 15.5 kN ⎝ 106 110 113 ⎠ ∑ F = 0 ⇒ F + (T z Az BCz + TBDz + TBEz ) = 0 −4 ⎞ ⎛ 5 FAz = −T ⎜ + ⎟ = −0.603 kN ⎝ 110 113 ⎠ Vector method for moments: ! ! ! ! ! ! ∑ M A = 0 ⇒ M A + ∑ ⎡⎣ rAB × (Tû ) ⎤⎦ = 0 ⇒ M A = − rAB × ⎡⎣T ( û BC + û BD + û BE ) ⎤⎦ ! ⎡ ⎛ ˆ ⎢⎣ ⎝ 106 ˆ ⎞⎤ ˆ ! r!AB = hĵ. M A = −Th ⎡ ĵ × ( û BC + û BD + û BE ) ⎤ = −Th ⎢ ĵ × ⎜ −5i − 9 ĵ + 2i − 9 ĵ + 5 k̂ + 4 i − 9 ĵ − 4 k̂ ⎟ ⎥ ⎣ ⎦ 110 113 ⎠ ⎥⎦ ! 4 ⎞ˆ ⎛ 5 2 4 ⎞ ⎤ ⎡⎛ 5 ˆ M A = −Th ⎢⎜ − i +⎜ − − ⎟ ⎟⎠ k̂ ⎥ = −54.2i + 43.9 k̂ kNm ⎝ ⎠ ⎝ 110 113 106 110 113 ⎣ ⎦ ( ) Scalar method for moments: Sum moments around each axis. ⎛ 5 ⎞ ⎛ 4 ⎞ ! ∑ M x = 0 ⇒ M Ax + h ⎜ T ⎟ − h⎜ T⎟ = 0 ⎝ 110 ⎠ ⎝ 113 ⎠ 5 ⎞ ⎛ 4 − ! M Ax = Th ⎜ ⎟ = −54.2 kNm ⎝ 113 110 ⎠ ! ∑ M y = 0 ⇒ M Ay = 0 ⎛ 2 ⎞ ⎛ 5 ⎞ ⎛ 4 ⎞ ! ∑ M z = 0 ⇒ M Az − h ⎜ T ⎟ + h⎜ T ⎟ − h⎜ T⎟ = 0 ⎝ 110 ⎠ ⎝ 106 ⎠ ⎝ 113 ⎠ 5 4 ⎞ ⎛ 2 − + ! M Az = Th ⎜ ⎟ = 43.9 kNm ⎝ 110 106 113 ⎠ Problem 3 ∑M x =0⇒− 3 7 TA ) − 1(TC ) + ( mg ) = 0 ( 2 8 To get whole numbers, multiply by 8: 12TA + 8TC = 7mg (1) ∑M z =0⇒ 9 5 5 TB ) + (TC ) − ( mg ) = 0 ( 10 2 4 Multiply by 20: ! 18TB + 50TC = 25mg ∑F y (2) = 0 ⇒ TA + TB + TC − mg = 0 TA + TB + TC = mg (3) Solve (1), (2) and (3) simultaneously to get ! TA = 1.09 kN. TB = 0.975 kN. TC = 1.37 kN. Problem 4 F1 = 3.6 kN. ∑F x F2 = 2.4 kN. = 0 ⇒ Ox + F2 cos 50˚= 0 Ox = −F2 cos 50˚= −1.54 kN ∑F y = 0 ⇒ Oy − F2 sin 50˚+F1 cos 20˚= 0 Oy = F2 sin 50˚−F1 cos 20˚= −1.28 kN ∑F = 0 ⇒O z z − F1 sin 30˚= 0 Oz = F1 sin 30˚= 1.80 kN Scalar method for moments: (∑ M ) ! O x = 0 ⇒ M Ox + ( 0.15 m ) ( F1 cos 30˚) − ( 0.35 m ) ( F2 sin 50˚) = 0 ! M Ox = − ( 0.15 m ) ( F1 cos 30˚) + ( 0.35 m ) ( F2 sin 50˚) = 0.176 kNm (∑ M ) ! O y = 0 ⇒ M Oy − ( 0.35 m ) ( F2 cos 50˚) = 0 ! M Oy = ( 0.35 m ) ( F2 cos 50˚) = 0.540 kNm (∑ M ) ! O z = 0 ⇒ M Oz − ( 0.2 m ) ( F2 sin 50˚) = 0 ! M Oz = ( 0.2 m ) ( F2 sin 50˚) = 0.368 kNm Vector method for moments: ! ! ! ! ! ∑ M O = 0 ⇒ M O + −0.15 m k̂ × F1 + −0.35 m k̂ + 0.2 m iˆ × F2 = 0 ( ! ( ) ) ( ( ) ) ( ) ( ) ! M O = 0.15 m k̂ × ⎡ F1 cos 30˚ ĵ − sin 30˚k̂ ⎤ + 0.35 m k̂ − 0.2 m iˆ × ⎡ F2 cos 50˚iˆ − sin 50˚ ĵ ⎤ = 0 ⎣ ⎦ ⎣ ⎦ ! ! M O = 0.176iˆ + 0.540 ĵ + 0.368 k̂ kNm ( )
© Copyright 2026 Paperzz