Introduction to the physics of multiferroics Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. “Models in magnetism: from basics aspects to practical use” Timisoara september 2009 Summary Introduction and definitions The example of YMnO3 Origin of the coupling term Dzyaloshinskii-Moriya Importance of symmetry Applications Some examples Landau theory and symmetries The example of MnWO4 Examples are taken in work of Natalia Bellido, Damien Saurel, Kiran Singh and Bohdan Kundys models in magnetism timisoara 2 What is a multiferroic? Definitions are various: For me in this lecture: A ferromagnetic and ferroelectric compound. (spontaneous magnetization in zero field and spontaneous polarization in zero field) It was predicted by P. Curie in 1894 “Les conditions de symétrie nous permettent d’imaginer qu’un corps se polarise magnétiquement lorsqu’on lui applique un champ électrique” Debye in 1926: magnetoélectric Landau in 1957 Dzyaloshinskii in 1959 predicts that Cr2O3 magnetoelectric Astrov et al. 1960 E induces M, Folen, Rado Stalker 1961, B induces P. models in magnetism timisoara 3 One example: YMnO3 Hexagonal : P63cm ferroelectric MnO5 b Y3+ a Mn3+ S=2 c models in magnetism timisoara 4 Why this example • Because is it quite simple in symmetry and interactions • However, this is rather complex, and if you find it difficult, this is normal, I find it complex. models in magnetism timisoara 5 Pc 5.5μC/cm2 c 900K T Experimental difficulty P=II(t)dt C=ε0εS/t models in magnetism timisoara 6 5.4 0.15 from T=10K to T=100K 5.2 M(μB/fu) -3 Mn3+ χ (10 emu/mol) Antiferromagnetism 5.0 4.8 4.6 4.4 0 50 100 150 200 T (K) 0.10 0.05 0.00 0 2 4 6 8 10 12 14 μ Η(T) L : alternate magnetization models in magnetism timisoara 7 Neutron scattering Order parameter L = Σ Si exp(2iπ Qri) models in magnetism timisoara 8 YMnO3 - ε(T) ε = 1/ ε0 dP/dE dielectric constant 18.0 ε 17.5 17.0 16.5 0 20 40 60 80 100 120 T(K) ε ∝ −L 2 models in magnetism timisoara 9 Pc 5.5μC/cm2 c TN 900K T models in magnetism timisoara 10 0.000430 Pc 5.5μC/cm2 M(emu) 0.000425 0.000420 0.000415 TN 0.000410 0 20 40 60 80 100 T(K) T Small ferromagnetic component along c induced by the ferroelectric component L order parameter P non zero everywhere, secondary M third order models in magnetism timisoara 11 They don’t vary in the same way. Pailhes et al., 2009 models in magnetism timisoara 12 After Pailhes et al. Hybrid modes models in magnetism timisoara 13 questions • YMnO3 is ferromagnetic (?) below TN! – This was already published by Bertaut models in magnetism timisoara 14 questions • YMnO3 is ferromagnetic (?) below TN! • What is the origin of the coupling? Why there is an effect on polarization? – Two steps • The microscopic coupling (exchange, LS coupling) • The long range ordering (symmetry) – Both are difficult models in magnetism timisoara 15 Origin of the coupling term 1 Displacement of oxygen is responsible to the polarization 2 Origin of the antiferromagnetism? superexchange by oxygen 3 antiferromagnetism by superexchange changes the energy and the polarization 4 It induces a ferromagnetic component. models in magnetism timisoara 16 Superexchange explanation? • Does superexchange enough to understand the coupling? – No, because of the symmetry. If you add the three contributions, they cancel by symmetry. models in magnetism timisoara 17 Cancel by symmetry After I. A. Sergienko and E. Dagotto models in magnetism timisoara 18 On the contrary, the Dzyaloshinskii-Moriya interaction— i.e., anisotropic exchange interaction Sn x Sn+1— changes its sign under inversion. models in magnetism timisoara 19 Dzyaloshinskii-Moriya interaction • Of course, this expansion in term of LS coupling does not mean that this term in the dominant one, but an least, this is the first one you can think about. models in magnetism timisoara 20 models in magnetism timisoara 21 Sn x Sn+1 Sn+1 Sn x Sn+1 Sn+1 Sn Sn Effect of inversion models in magnetism timisoara 22 • The problem is the symmetry • The solution is the symmetry • The method in Landau theory models in magnetism timisoara 23 YMnO3 symmetry • Non ferroelectric P63/mmc (194) M=0 • ferroelectric P63cm (185). Mc can be non zero models in magnetism timisoara 24 1 identity 2 symmetry by a plane No in plane components 3 rotation axis 2 with translation C axis component possible 4 combinations of two models in magnetism timisoara 25 YMnO3 symmetry Non ferro ferro models in magnetism timisoara 26 • Symmetry analysis shows that the experimental observation was the only possible one. models in magnetism timisoara 27 models in magnetism timisoara 28 Symmetry restrictions models in magnetism timisoara 29 • This is very limited • Solution: incommensurability – An incommensurate modulation of the magnetism with a ferromagnetic component suppresses the corresponding symmetry elements models in magnetism timisoara 30 models in magnetism timisoara 31 Applications • • • Magnetic memories that you can write with electric field RAM (random acces memory) FRAM (ferroélectric, no battery), MRAM (magnétic, no battery, difficult to write). Multiferro: write with electric field, read with magnetic sensor. models in magnetism timisoara 32 GMR I M R models in magnetism timisoara 33 Write multiferro P I M R models in magnetism timisoara 34 One historical example: Boracites models in magnetism timisoara 35 Ni3B7O13I models in magnetism timisoara 36 Other materials • • • • • Structure: perovskite: BiFeO3 PrMnO3 Structure: hexagonal: MMnO3 M=Y, Ho, etc… Boracites Spiral magnetic order: TbMnO3 MnWO4 Fe Langasites. models in magnetism timisoara 37 models in magnetism timisoara 38 Tenurite CuO models in magnetism timisoara 39 Kagome staircase - Co3V2O8 Ni3V2O8 [1]: S=1 Co3V2O8 [1]: S=3/2 β-Cu3V2O8 [2]: S=1/2 0.6 δ=1/2 0.5 0.4 δ Co3V2O8 7.74 δ=1/3 ε 0.3 7.73 0.2 0.1 0.0 δ=0 4 7.72 6 8 10 T(K) 12 14 4 6 models in magnetism timisoara 8 10 T(K) 12 14 40 Eu0.75Y0.25MnO3 H=0 H models in magnetism timisoara 41 CuCrO2 Complex incommensurate structure models in magnetism timisoara 42 CuCrO2 Time(Sec) 21 (b) Polarization, P(μC/m2) 20 F = FAFM (L ) + αP 2 − EP + gLP 19 18 17 16 15 14 13 -10 -8 -6 -4 -2 0 2 4 6 8 10 6 8 10 Transversal magnetostriction, ΔL/L*106 H(T) (c) 4 L2 = ( − a (T − TN ) + dH 2 ) / 2b 20K 3 2 1 0 -1 -10 -8 -6 -4 -2 0 2 4 H(T) Bohdan Kundys, Maria Poienar, Antoine Maignan, Christine Martin, Charles Simon models in magnetism timisoara 43 FeVO4 6 Fe3+ 5/2 in a triclinic structure 1 models in magnetism timisoara 44 FeVO4 models in magnetism timisoara 45 FeCuO2 models in magnetism timisoara 46 A ferroic material models in magnetism timisoara 47 Free energy from “Landau” Ferromagnet M F = F0 + c1M + c2 M 2 + c3 M 3 + c4 M 4 + .... − MH Tc FFM = FFM 0 a 2 b 4 + M + M − MH 2 4 Température Ferroelectric P F = F0 + c1 P + c2 P 2 + c3 P 3 + c4 P 4 + .... − PE Tc r P Température +Q -Q r P -Q +Q FFE = FFE0 + α 2 P + 2 β 4 P 4 − PE T>Tc FFM = FFM 0 a 2 b 4 + M + M − MH 2 4 a is linear in T-Tc T<Tc M2 = -a/b H T models in magnetism timisoara 49 Interactions and symmetries • This example is too simple: the symmetry is hidden and the role of the interactions is not clear models in magnetism timisoara 50 • We have already discussed in this school the possible origins of ferromagnetism • Let us discuss briefly the possible origin of ferroelectricity: – A shift of one of the atoms from the symmetrical position due electron electron repulsion models in magnetism timisoara 51 Free energy from “Landau” Ferromagnet M F = F0 + c1M + c2 M 2 + c3 M 3 + c4 M 4 + .... − MH Tc FFM = FFM 0 a 2 b 4 + M + M − MH 2 4 Température Ferroelectric P F = F0 + c1 P + c2 P 2 + c3 P 3 + c4 P 4 + .... − PE Tc r P Température +Q -Q r P -Q +Q FFE = FFE0 + α 2 P + 2 β 4 P 4 − PE A little more about Landau • Paraelectric I 4/mmm to ferroelectric II at Tc. • F is formed by successive invariants From P. Toledano models in magnetism timisoara 53 • Quadratic invariants Px2+Py2, Pz2 • Quartic invariants (Px2+Py2) 2, Pz4, Px4+Py4, (PxPy)2 • F=F0+a/2(Px2+Py2)+a’/2 Pz2+… • Minimization of F with respect to Px,Py,Pz • a or a’ changes sign first (assume a, a’>0) models in magnetism timisoara 54 • Then, Pz2 = -a/b • Pz is the order parameter. Ferroelectric P F = F0 + c1 P + c2 P 2 + c3 P 3 + c4 P 4 + .... − PE Tc r P Température +Q -Q models in magnetism timisoara 55 • Two possibilities: Pz 4mm dimension 1 Pxy 2mm dimension 2 Subgroups of 4/mmm models in magnetism timisoara 56 Secondary order parameter Let us call e the strain tensor models in magnetism timisoara 57 Magnetic energy Example 4 atoms in Pca21 models in magnetism timisoara 58 • This is rather complex, because spins don’t transform with the same symmetry operations than the “real” vectors, • S x S is also different. models in magnetism timisoara 59 • One example: in a mirror Real vector Axial vector models in magnetism timisoara S x S vector 60 In addition • Incommensurate modulations suppresses Symmetry elements. I have no time to explain details models in magnetism timisoara 61 MnWO4 ferroelectric models in magnetism timisoara 62 MnWO4 sensitive to magnetic field models in magnetism timisoara 63 AF1, AF2, AF3 P along a -0.241,1/2,0.457 Collinear 1/4,,1/2,1/2 models in magnetism timisoara 64 • The symmetry analysis was made by P. Toledano, and we find all the observed phases as possible sub groups models in magnetism timisoara 65 models in magnetism timisoara 66 Pr1/2Ca1/2MnO3 CE type Ferromagnetic coupling models in magnetism timisoara 67 No centrosymmetry From Khomskii et al. models in magnetism timisoara 68 models in magnetism timisoara 69 models in magnetism timisoara 70 No ferroelectricity models in magnetism timisoara 71 YMnO3 - Landau ε = ε 0 + c1T 2 − c2 L2 (T ) + c3 H 2 ∼20 ∼1 ∼10-4 Free energy : F = F0 + FAFM + FFE + Fcoupl = 2 L2 L4 P g γ = F0 + a + b + cL2 H 2 + α − EP + P 2 L2 + P 2 H 2 2 4 2 2 2 Minimization : ∂F = 0 ⇒ αP − E + gPL2 + γPH 2 = 0 ∂P 1 P= E 2 2 α + gL + γH Electric χ = ε-1 susceptibility YMnO3 – Anomaly in ε(T) 1 χ= α + gL2 + γH 2 1 1 gL2 Δε (T ) = ε ( H = 0, L) − ε ( H = 0, L = 0) = − ≈− 2 2 α + gL α α YMnO3 – ε(H) r E Δε~10-4 0.04 T=10K T=20K T=30K T=50K T=60K 0.02 0.00 r B ΔεH/ε00.04 (%) T=40K 0.02 12 -2 coeffient me x10 (T ) 0.00 0.04 3 T=80K T=70K T=90K 0.02 2 0.00 -10 1 0 0 20 40 T(K) 60 80 -5 0 5 μ0H(T) 10 -10 -5 0 5 μ0H(T) 10 -10 -5 0 5 μ0H(T) 10 15 Paramagnet models in magnetism timisoara 74 YMnO3 –magnétodiélectric effect ε(H) in H2 1 χ= α + gL2 + γH 2 Δε ( H ) = ε ( H , L) − ε ( H = 0, L) = γH 2 ⎛⎜ gL2 Δε ( H ) ≈ − 2 1 − 2 α ⎜⎝ α 12 -2 coeffient me x10 (T ) 1 1 γH 2 = − ≈− 2 2 2 2 α + gL + γH α + gL α 3 2 γ 1 0 L = L + ⎛⎜ L2 − L2 ⎞⎟ ⎝ ⎠ 2 0 20 40 60 80 ⎞ ⎟ ⎟ ⎠ 2 T(K) models in magnetism timisoara fluctuations~χL 75 YMnO3 constante diélectrique γ λ 2⎛ ε = ε 0 + c1T − 2 L − 2 H ⎜⎜1 + α α ⎝ T − TN g 2 ⎞ ⎟⎟ ⎠ 12 -2 coeffient me x10 (T ) 2 3 2 1 0 0 20 40 60 80 T(K) models in magnetism timisoara 76 CuCrO2 TN -5 4.4x10 0.5 5 27K 25K 4 Δε'/ε'H=0 (%) 10K -1.5 -2.0 15K -2.5 24K -3.0 21K -1 6K -1.0 χ (emu.g ) -0.5 3 -5 4.2x10 2 -Δε'/ε'H=0 (%) 0.0 1 22K -3.5 100kHz 23K 0 -5 4.0x10 -4.0 -10 -8 -6 -4 -2 0 2 4 6 8 10 0 12 24 36 48 T(K) H(T) models in magnetism timisoara 77 Co3V2O8 Δε∼χ 0.00 T=7K -0.05 6 15 3 10 0 T=7K -35 -0.10 0.00 ΔεΗ/ε0 (%) T=20K -0.05 -0.10 -0.15 T=7K -60 6 dM/dH 1.03 M (μB/T·f.u.) 0.50 (μB/f.u.) -3 T=20K T=20K -6 0.5 6 0.00 3 0.4 0 -0.05 -3 0.3 -6 T=50K -0.10 -10 -5 0 5 μ0H(T) 10 T=50K T=50K -10 -10 -5 -5 00 55 H(T) μμ00H(T) 10 10 Ca3Co2O6 – magnetization plateaux R-3cm Polyhèdra CoO6 : triangular prism S=2 octahedra S= 0 Ferromagnet intrachain interac. Triangular ising lattice Antiferromagnetic interchain (TN=24K) ΔH=3.6T ΔH=1.2T 5 4 M (μB/f.u.) M (μB/f.u.) 5 T=10K 3 2 1 0 0 1 2 3 4 5 6in models μ0H(T) 4 3 T=2K 2 1 0 0 2 4 magnetism timisoara 6 8 μ0H(T) 10 79 Ca3Co2O6 T=10K χM (μB(/T·f.u.) μB/f.u.) 5 1.5 4 Δε∼-χ 1.03 2 0.5 1 ΔεH/εsat (%) 0.00 00 1 1 2 2 33 44 μμ0H(T) H(T) 0 55 66 0 No polarization -1 0 1 2 3 4 μ0H(T) 5 6 models in magnetism timisoara 80 MnWO4 A nice example models in magnetism timisoara 81 P.G. Radaelli and L.C. Chapon, PRB, 76054428(2007) models in magnetism timisoara 82 models in magnetism timisoara 83 models in magnetism timisoara 84 Conclusion • • • • • Spin orbit coupling is necessary to create coupling between ferromagnetism and ferroelectricity Incommensurability is very useful to help with symmetry There is no ab initio calculation of the intensity of the coupling There is more to understand in the coupling terms Magnetic group theory is needed. models in magnetism timisoara 85
© Copyright 2026 Paperzz