MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS MATH 1000 Assignment 6 Fall 2015 SOLUTIONS [4] 1. (a) We use the Product Rule, followed by the Chain Rule: f 0 (x) = [cos(x)]0 log5 (cos(x)) + cos(x)[log5 (cos(x))]0 = − sin(x) log5 (cos(x)) + cos(x) · = − sin(x) log5 (cos(x)) − [5] 1 [cos(x)]0 cos(x) ln(5) 1 sin(x). ln(5) (b) Since this function is of the form [f (x)]g(x) , we must use logarithmic differentiation: 2 ln(y) = ln [sec(x)]x −9 = (x2 − 9) ln(sec(x)) d d [ln(y)] = [(x2 − 9) ln(sec(x))] dx dx 1 dy 1 · = 2x ln(sec(x)) + (x2 − 9) · · sec(x) tan(x) y dx sec(x) = 2x ln(sec(x)) + (x2 − 9) tan(x) dy = y 2x ln(sec(x)) + (x2 − 9) tan(x) dx 2 = [sec(x)]x −9 2x ln(sec(x)) + (x2 − 9) tan(x) . [5] (c) First we simplify the function using the properties of logarithms: √ 3 x csc5 (x) f (x) = ln (3x − 1)7 √ = ln 3 x csc5 (x) − ln (3x − 1)7 √ = ln 3 x + ln csc5 (x) − ln (3x − 1)7 = 1 ln(x) + 5 ln(csc(x)) − 7 ln(3x − 1). 3 Now we differentiate: 1 1 1 1 · +5· · [csc(x)]0 − 7 · · [3x − 1]0 3 x csc(x) 3x − 1 1 5 7 = + · [− csc(x) cot(x)] − ·3 3x csc(x) 3x − 1 1 21 = − 5 cot(x) − . 3x 3x − 1 f 0 (x) = [4] (d) We use the Chain Rule twice (or, alternatively, the Chain Rule followed by the Quotient Rule): f 0 (x) = 1+ = 1+ 1 −1 0 2 · [(ln(x)) ] 1 −2 0 2 · −(ln(x)) · [ln(x)] 1 ln(x) 1 ln(x) −1 1 · [ln(x)]2 + 1 x −1 . = x ([ln(x)]2 + 1) = [4] (e) We use the Chain Rule twice: dy d = − sin(cosh(arccos(x))) · [cosh(arccos(x))] dx dx d = − sin(cosh(arccos(x))) sinh(arccos(x)) · [arccos(x)] dx −1 = − sin(cosh(arccos(x))) sinh(arccos(x)) · √ 1 − x2 sin(cosh(arccos(x))) sinh(arccos(x)) √ = . 1 − x2 [5] 2. We differentiate both sides of the equation with respect to x, and obtain d d 4 3 [x y ] = [sin(x3 ) − sinh(y 4 )] dx dx dy dy 4x3 y 3 + 3y 2 x4 = cos(x3 ) · 3x2 − cosh(y 4 ) · 4y 3 dx dx dy dy 3x4 y 2 + 4y 3 cosh(y 4 ) = 3x2 cos(x3 ) − 4x3 y 3 dx dx dy 3x2 cos(x3 ) − 4x3 y 3 = 4 2 . dx 3x y + 4y 3 cosh(y 4 ) [6] 3. We have x7 e x √ ln(y) = ln tan(x) x2 + 5 √ 7 x 2 = ln(x e ) − ln tan(x) x + 5 = ln(x7 ) + ln(ex ) − ln(tan(x)) − ln √ x2 + 5 1 = 7 ln(x) + x − ln(tan(x)) − ln(x2 + 5) 2 d d 1 2 [ln(y)] = 7 ln(x) + x − ln(tan(x)) − ln(x + 5) dx dx 2 1 dy 7 1 1 1 · = +1− · sec2 (x) − · 2 · 2x y dx x tan(x) 2 x +5 sec2 (x) x 7 +1− − 2 x tan(x) x +5 7 dy sec2 (x) x =y +1− − 2 dx x tan(x) x +5 sec2 (x) x x7 e x 7 √ +1− − 2 = . tan(x) x +5 tan(x) x2 + 5 x = [7] 4. First we have 1 1 y0 = q · √ √ 2 2 x 1 − ( x) 1 = √ √ 2 x 1−x 1 . = √ 2 x − x2 The slope of the tangent line is √ 1 2 3 m=y = 4 3 0 and so the slope of the normal line is √ 1 3 mN = − = − . m 2 Also, note that when x = 41 , 1 π y = arcsin = . 2 6 Thus the equation of the tangent line is √ π 2 3 1 y− = x− 6 3 4 √ √ 2 3 π− 3 y= x+ 3 6 while the equation of the normal line is √ 3 1 π x− y− =− 6 2 4 √ √ 3 3 π y=− x+ + . 2 8 6
© Copyright 2026 Paperzz