Derivatives of the Trig and Exponential Functions The derivative of sine d sin(x + h) sin(x) sin x = lim h!0 dx h sin(x) cos(h) + cos(x) sin(h) = lim h!0 h sin(x) The derivative of sine d sin(x + h) sin(x) sin x = lim h!0 dx h sin(x) cos(h) + cos(x) sin(h) sin(x) = lim h!0 h sin(x)(cos(h) 1) + cos(x) sin(h) = lim h!0 h The derivative of sine d sin(x + h) sin(x) sin x = lim h!0 dx h sin(x) cos(h) + cos(x) sin(h) sin(x) = lim h!0 h sin(x)(cos(h) 1) + cos(x) sin(h) = lim h!0 h cos(h) 1 sin(h) = sin(x) lim + cos(x) lim h!0 h!0 h h The derivative of sine d sin(x + h) sin(x) sin x = lim h!0 dx h sin(x) cos(h) + cos(x) sin(h) sin(x) = lim h!0 h sin(x)(cos(h) 1) + cos(x) sin(h) = lim h!0 h cos(h) 1 sin(h) = sin(x) lim + cos(x) lim h!0 h!0 h h Recall: cos(0) = 1 and sin(0) = 0 Near x = 0, sin(x) ⇡ x: Graph of sin(x) x : 0.06 1 0.03 -0.09 -0.06 -0.03 0.03 0.06 -0.03 0.09 -8 -0.06 lim x!0 sin(x) =1 x -6 -4 -2 2 4 6 8 Near x = 0, cos(x) ⇡ 1: Graph of cos(x) 1 : x 1.025 0.5 1 -8 -6 -4 -2 2 -0.5 0.975 -0.025 0.025 lim x!0 cos(x) x 1 =0 4 6 8 The derivative of sine d sin(x + h) sin(x) sin x = lim h!0 dx h sin(x) cos(h) + cos(x) sin(h) sin(x) = lim h!0 h sin(x)(cos(h) 1) + cos(x) sin(h) = lim h!0 h cos(h) 1 sin(h) = sin(x) lim + cos(x) lim h!0 h!0 h h The derivative of sine d sin(x + h) sin(x) sin x = lim h!0 dx h sin(x) cos(h) + cos(x) sin(h) sin(x) = lim h!0 h sin(x)(cos(h) 1) + cos(x) sin(h) = lim h!0 h cos(h) 1 sin(h) = sin(x) lim + cos(x) lim h!0 h!0 h h = sin(x) ⇤ 0 + cos(x) ⇤ 1 = cos(x) The derivative of cosine d cos(x + h) cos(x) cos x = lim h!0 dx h cos(x) cos(h) sin(x) sin(h) = lim h!0 h cos(x) The derivative of cosine d cos(x + h) cos(x) cos x = lim h!0 dx h cos(x) cos(h) sin(x) sin(h) cos(x) = lim h!0 h cos(x)(cos(h) 1) sin(x) sin(h) = lim h!0 h The derivative of cosine d cos(x + h) cos(x) cos x = lim h!0 dx h cos(x) cos(h) sin(x) sin(h) cos(x) = lim h!0 h cos(x)(cos(h) 1) sin(x) sin(h) = lim h!0 h cos(h) 1 sin(h) = cos(x) lim sin(x) lim h!0 h!0 h h The derivative of cosine d cos(x + h) cos(x) cos x = lim h!0 dx h cos(x) cos(h) sin(x) sin(h) cos(x) = lim h!0 h cos(x)(cos(h) 1) sin(x) sin(h) = lim h!0 h cos(h) 1 sin(h) = cos(x) lim sin(x) lim h!0 h!0 h h = cos(x) ⇤ 0 sin(x) ⇤ 1 The derivative of cosine d cos(x + h) cos(x) cos x = lim h!0 dx h cos(x) cos(h) sin(x) sin(h) cos(x) = lim h!0 h cos(x)(cos(h) 1) sin(x) sin(h) = lim h!0 h cos(h) 1 sin(h) = cos(x) lim sin(x) lim h!0 h!0 h h = cos(x) ⇤ 0 = sin(x) sin(x) ⇤ 1 Does it make sense? y = sin(x) : y = cos(x) : y= sin(x) : Examples Calculate... 1. d dx sin(2x) = 2 ⇤ cos(2x) 2. d dx cos(3x + = d dx d dx sin(x) cos(x) = sin(x)( sin(x)) + cos(x) cos(x) 3. p x) cos(3x + x 1/2 ) = (3 + 12 x 1 2 ) sin(3x + x 1/2 ) = cos2 (x) Notice: sin(x) cos(x) = 12 sin(2x), and cos2 (x) sin2 (x) sin2 (x) = cos(2x). Does your answer still make sense from this perspective? 4. d dx sin(cos(x 2 + 2)) = cos(cos(x 2 + 2)) ⇤ d dx cos(x 2 + 2) d = cos(cos(x 2 + 2)) ⇤ ( sin(x 2 + 2)) ⇤ x2 + 2 dx = cos(cos(x 2 + 2)) ⇤ ( sin(x 2 + 2)) ⇤ (2x) On your own, fill in the rest of the trig functions: 1. d dx tan(x) = d sin(x) dx cos(x) = sec2 (x) 2. d dx cot(x) = d cos(x) dx sin(x) = 3. d dx sec(x) = d 1 dx (cos(x)) = sec(x) tan(x) 4. d dx csc(x) = d 1 dx (sin(x)) = csc2 (x) csc(x) cot(x) The Derivative of y = e x Recall! e x is the unique exponential function whose slope at x = 0 is 1: m=1 e 0+h e 0 eh 1 = lim =1 h!0 h!0 h h lim The Derivative of y = e x ... lim h!0 eh 1 h =1 d x e x+h e x e = lim h!0 dx h ex eh 1 = lim h!0 h h e 1 = e x lim h!0 h = ex ⇤ 1 So d x e = ex dx Examples Calculate... 1. d 17x dx e 2. d x ln(3) dx e 3. d sin x dx e 4. p d x 2 +x e dx = 17e 17x = ln(3)e x ln(3) = cos(x)e sin x = p 2x+1 x 2 +x p e 2 x 2 +x Notice, every time: d f (x) e = f 0 (x)e f (x) dx Other bases We know Notice: d a dx x = ax a 1, but what is d x dx a ? x ax = e ln(a ) = e xln(a) So Example: d x d x ln(a) a = e = ln(a)e x ln(a) = ln(a) ⇤ ax dx dx d x dx 2 Sanity check: = ln(2) ⇤ 2x d x ? dx e = ln(e) ⇤ e x = 1 ⇤ e x , Derivative so far Definition: f 0 (x) lim h!0 f (x + h) h f (x) Combining functions: d c ⇤ f (x) = c ⇤ f 0 (x) dx d (f (x) + g (x)) = f 0 (x) + g 0 (x) dx d (f (x) ⇤ g (x)) = f (x)g 0 (x)+g (x)f 0 (x) dx d (f (g (x)) = f 0 (g (x))⇤g 0 (x) dx Basic functions: f (x) f 0 (x) xa ax a 1 sin(x) cos(x) cos(x) sin(x) ex ex Other functions: f (x) f 0 (x) tan(x) sec2 (x) cot(x) csc2 (x) sec(x) sec(x) tan(x) csc(x) csc(x) cot(x) ax ln(a)ax Example Compute the derivatives of 2 p 1. e 17x + x = e 17x ⇣ ⌘ 2 p 2. tan e 17x + x 2+ p x ⇣ ⇤ 17 ⇤ 2x + 1 p 2 x ⌘ ⇣ ⌘ ⇣ ⇣ 2 p 2 p = sec2 e 17x + x ⇤ e 17x + x ⇤ 17 ⇤ 2x + h ⇣ ⌘i4 2 p 3. csc(x) ⇤ 3x + tan3 e 17x + x 1 p 2 x ⌘⌘
© Copyright 2025 Paperzz