Dimensional Analysis_11-03

Dimensional Analysis
11. 3. 2014
Hyunse Yoon, Ph.D.
Assistant Research Scientist
IIHR-Hydroscience & Engineering
e-mail: [email protected]
Dimensions and Units
β€’ Dimension: A measure of a physical quantity
– 𝑀𝑀𝑀𝑀𝑀𝑀 system: Mass (𝑀𝑀), Length (𝐿𝐿), Time (𝑇𝑇)
– 𝐹𝐹𝐹𝐹𝐹𝐹 system: Force (𝐹𝐹 = 𝑀𝑀𝑀𝑀𝑇𝑇 βˆ’2 ), Length (L), Time (T)
β€’ Unit: A way to assign a number to that dimension
Dimension
Symbol
Mass
𝑀𝑀
Length
Time
𝐿𝐿
𝑇𝑇
SI Unit
BG Unit
kg (kilogram)
lb (pound)
m (meter)
ft (feet)
s (second)
s (second)
2
The Principle of Dimensional
Homogeneity (PDH)
β€’
Every additive terms in an equation must have the same dimensions
Ex) Displacement of a falling body
1
𝑧𝑧 = 𝑧𝑧0 + 𝑉𝑉0 𝑑𝑑 βˆ’ 𝑔𝑔𝑑𝑑 2
2
𝐿𝐿
𝐿𝐿 = 𝐿𝐿 +
𝑇𝑇
– 𝑧𝑧0 : Initial distance at 𝑑𝑑 = 0
– 𝑉𝑉0 : Initial velocity
𝐿𝐿
𝑇𝑇 βˆ’ 2
𝑇𝑇
𝑇𝑇 2
3
Nondimensionalization
β€’
β€’
Nondimensionalization: Removal of units from physical quantities by a
suitable substitution of variables
Nondimensionalized equation: Each term in an equation is dimensionless
E.g.) Displacement of a falling body
Let:
𝑧𝑧
𝐿𝐿
𝑧𝑧 βˆ— = =Μ‡
𝑧𝑧0
𝐿𝐿
Substitute into the equation,
Then, divide by 𝑧𝑧0 ,
βˆ’1
𝑉𝑉
𝑑𝑑
𝐿𝐿𝑇𝑇
𝑇𝑇
0
𝑑𝑑 βˆ— =
=Μ‡
𝐿𝐿
𝑧𝑧0
βˆ—
βˆ—
1
𝑑𝑑
𝑧𝑧
𝑑𝑑
𝑧𝑧0
0
βˆ’ 𝑔𝑔
𝑧𝑧 βˆ— 𝑧𝑧0 = 𝑧𝑧0 + 𝑉𝑉0
𝑉𝑉0
2
𝑉𝑉0
1 βˆ—2
𝑧𝑧 = 1 + 𝑑𝑑 +
𝑑𝑑 ,
2𝛼𝛼
βˆ—
βˆ—
2
𝑉𝑉02
𝛼𝛼 =
𝑔𝑔𝑧𝑧0
4
Dimensional vs. Non-dimensional Equation
β€’ Dimensional equation
or
1 2
𝑧𝑧 = 𝑧𝑧0 + 𝑉𝑉0 𝑑𝑑 βˆ’ 𝑔𝑔𝑑𝑑
2
𝐹𝐹 𝑧𝑧, 𝑧𝑧0 , 𝑉𝑉0 , 𝑔𝑔, 𝑑𝑑 = 0 β‡’ 5 variables
β€’ Non-dimensional equation
or
1 βˆ—2
𝑧𝑧 = 1 + 𝑑𝑑 βˆ’
𝑑𝑑
2𝛼𝛼
βˆ—
𝑓𝑓 𝑧𝑧 βˆ— , 𝑑𝑑 βˆ— , 𝛼𝛼 = 0
βˆ—
β‡’ 3 variables
5
Advantages of Nondimensionalization
Dimensional: (a) 𝑉𝑉0 fixed at 4 m/s and
(b) 𝑧𝑧0 fixed at 10 m
𝑉𝑉02
𝛼𝛼 =
𝑔𝑔𝑧𝑧0
Non-dimensional: (a) and (b) are
combined into one plot
6
Dimensional Analysis
β€’ A process of formulating fluid mechanics problems in terms of
non-dimensional variables and parameters
1. Reduction in variables
𝐹𝐹 = 𝐴𝐴1 , 𝐴𝐴2 , … , 𝐴𝐴𝑛𝑛 = 0,
𝐴𝐴𝑖𝑖 = dimensional variables
𝑓𝑓 = Ξ 1 , Ξ 2 , … , Ξ π‘Ÿπ‘Ÿ<𝑛𝑛 = 0, Π𝑖𝑖 = non-dimensional parameters
2. Helps in understanding physics
3. Useful in data analysis and modeling
4. Fundamental to concepts of similarity and model
testing
7
Buckingham Pi Theorem
β€’
β€’
IF a physical process satisfies the PDH and involves 𝒏𝒏 dimensional
variables, it can be reduced to a relation between only 𝒓𝒓 dimensionless
variables or Π’s.
The reduction, π’Žπ’Ž = 𝒏𝒏 βˆ’ 𝒓𝒓, equals the maximum number of variables that
do not form a pi among themselves and is always less than or equal to the
number of dimensions describing the variables.
𝑛𝑛 = Number of dimensional variables
π‘šπ‘š = Minimum number of dimensions to describe the variables
π‘Ÿπ‘Ÿ = 𝑛𝑛 βˆ’ π‘šπ‘š = Number of non-dimensional variables
8
Methods for determining Π’s
1. Functional relationship method
a.
b.
c.
Inspection (Intuition; Appendix A)
Exponent method (Also called as the method of repeating variables)
Step-by-step method (Appendix B)
2. Non-dimensionalize governing differential equations (GDE’s)
and initial (IC) and boundary (BC) conditions
9
Exponent Method
(or Method of Repeating Variables)
β€’
β€’
β€’
β€’
β€’
β€’
β€’
β€’
Step 1: List all the variables that are involved in the problem.
Step 2: Express each of the variables in terms of basic dimensions.
Step 3: Determine the required number of pi terms.
Step 4: Select a number of repeating variables, where the number
required is equal to the number of reference dimensions.
Step 5: Form a pi term by multiplying one of the nonrepeating variables by
the product of the repeating variables, each raised to an exponent that
will make the combination dimensionless.
Step 6: Repeat Step 5 for each of the remaining nonrepeating variables.
Step 7: Check all the resulting pi terms to make sure they are
dimensionless.
Step 8: Express the final form as a relationship among the pi terms, and
think about what it means.
10
Example 1
11
Steps 1 through 3
β€’
β€’
Step 1: List all the variables that are involved in the problem.
Δ𝑝𝑝 = 𝑓𝑓 𝐷𝐷, β„“, 𝑉𝑉, πœ‡πœ‡
Step 2: Express each of the variables in terms of basic dimensions.
Variable
Unit
Dimension
β€’
Δ𝑝𝑝
𝐷𝐷
β„“
𝑉𝑉
πœ‡πœ‡
N/m2
m
m
m/s
Nβ‹…s/m2
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’2
𝐿𝐿
𝐿𝐿
𝐿𝐿𝑇𝑇 βˆ’1
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’1
Step 3: Determine the required number of pi terms.
𝑛𝑛 = 5 for π›₯π›₯π›₯π›₯, 𝐷𝐷, β„“, 𝑉𝑉, and πœ‡πœ‡
π‘šπ‘š = 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇
∴ π‘Ÿπ‘Ÿ = 𝑛𝑛 βˆ’ π‘šπ‘š = 5 βˆ’ 3 = 2 (i.e., 2 pi terms)
12
Step 4
β€’
β€’
β€’
Select a number of repeating variables, where the number required is
equal to the number of reference dimensions (for this example, π‘šπ‘š = 3).
All of the required reference dimensions must be included within the
group of repeating variables, and each repeating variable must be
dimensionally independent of the others (The repeating variables cannot
themselves be combined to form a dimensionless product).
Do NOT choose the dependent variable as one of the repeating variables,
since the repeating variables will generally appear in more than one pi
term.
β‡’ (𝐷𝐷, 𝑉𝑉, πœ‡πœ‡) for (𝐿𝐿, 𝑇𝑇, 𝑀𝑀), respectively
13
Step 5
β€’
Combine 𝐷𝐷, 𝑉𝑉, πœ‡πœ‡ with one additional variable (Δ𝑝𝑝 or β„“), in sequence, to find the two pi
products
Ξ 1 = 𝐷𝐷 π‘Žπ‘Ž 𝑉𝑉 𝑏𝑏 πœ‡πœ‡π‘π‘ Δ𝑝𝑝 = 𝐿𝐿
Equate exponents:
Mass(𝑀𝑀):
Length(𝐿𝐿):
Time(𝑇𝑇):
Solve for,
Therefore,
= 𝑀𝑀
𝑐𝑐+1
π‘Žπ‘Ž
𝐿𝐿𝑇𝑇 βˆ’1
𝑏𝑏
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’1
𝑐𝑐
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’2
𝐿𝐿 π‘Žπ‘Ž+π‘π‘βˆ’π‘π‘βˆ’1 𝑇𝑇 βˆ’π‘π‘βˆ’π‘π‘βˆ’2 = 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0
𝑐𝑐 + 1 = 0
π‘Žπ‘Ž + 𝑏𝑏 βˆ’ 𝑐𝑐 βˆ’ 1 = 0
βˆ’π‘π‘ βˆ’ 𝑐𝑐 βˆ’ 2 = 0
π‘Žπ‘Ž = 1
𝑏𝑏 = βˆ’1
𝑐𝑐 = βˆ’1
Ξ 1 = 𝐷𝐷𝑉𝑉 βˆ’1 πœ‡πœ‡βˆ’1 Δ𝑝𝑝 =
Δ𝑝𝑝𝑝𝑝
πœ‡πœ‡πœ‡πœ‡
14
Step 6
β€’
Repeat Step 5 for each of the remaining nonrepeating variables.
Ξ 2 = π·π·π‘Žπ‘Ž 𝑉𝑉 𝑏𝑏 πœ‡πœ‡π‘π‘ β„“ = 𝐿𝐿
Equate exponents:
Mass(𝑀𝑀):
Length(𝐿𝐿):
Time(𝑇𝑇):
Solve for,
Therefore,
π‘Žπ‘Ž
𝐿𝐿𝑇𝑇 βˆ’1
𝑏𝑏
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’1
= 𝑀𝑀𝑐𝑐 πΏπΏπ‘Žπ‘Ž+π‘π‘βˆ’π‘π‘+1 𝑇𝑇 βˆ’π‘π‘βˆ’π‘π‘ = 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0
𝑐𝑐
𝐿𝐿
𝑐𝑐 = 0
π‘Žπ‘Ž + 𝑏𝑏 βˆ’ 𝑐𝑐 + 1 = 0
βˆ’π‘π‘ βˆ’ 𝑐𝑐 = 0
π‘Žπ‘Ž = βˆ’1
𝑏𝑏 = 0
𝑐𝑐 = 0
Ξ 2 = π·π·βˆ’1 𝑉𝑉 0 πœ‡πœ‡0 β„“ =
β„“
𝐷𝐷
15
Step 7
β€’
β€’
Check all the resulting pi terms.
One good way to do this is to express the variables in terms of 𝐹𝐹, 𝐿𝐿, 𝑇𝑇 if
the basic dimensions 𝑀𝑀, 𝐿𝐿, 𝑇𝑇 were used initially, or vice versa.
Variable
Δ𝑝𝑝
𝐷𝐷
β„“
𝑉𝑉
πœ‡πœ‡
Unit
N/m2
m
m
m/s
Nβ‹…s/m2
Dimension
πΉπΉπΏπΏβˆ’2
𝐿𝐿
𝐿𝐿
𝐿𝐿𝑇𝑇 βˆ’1
πΉπΉπΉπΉπΏπΏβˆ’2
Δ𝑝𝑝𝑝𝑝
πΉπΉπΏπΏβˆ’2 𝐿𝐿
0 0 0
Ξ 1 =
=Μ‡
=
Μ‡
𝐹𝐹
𝐿𝐿 𝑇𝑇
πœ‡πœ‡πœ‡πœ‡
πΉπΉπΉπΉπΏπΏβˆ’2 𝐿𝐿𝑇𝑇 βˆ’1
β„“
𝐿𝐿
=Μ‡ 𝐹𝐹 0 𝐿𝐿0 𝑇𝑇 0
Ξ 2 = =Μ‡
𝐷𝐷
𝐿𝐿
16
Step 8
β€’
Express the final form as a relationship among the pi terms.
Ξ 1 = 𝑓𝑓 Ξ 2
or
β€’
Think about what it means.
Since Δ𝑝𝑝 ∝ β„“,
where 𝐢𝐢 is a constant. Thus,
Δ𝑝𝑝𝑝𝑝
β„“
= 𝑓𝑓
πœ‡πœ‡πœ‡πœ‡
𝐷𝐷
Δ𝑝𝑝𝑝𝑝
β„“
= 𝐢𝐢 β‹…
πœ‡πœ‡πœ‡πœ‡
𝐷𝐷
Δ𝑝𝑝 ∝
1
𝐷𝐷2
17
Problems with One Pi Term
β€’ The functional relationship that must exist for one pi term is
where 𝐢𝐢 is a constant.
Π = 𝐢𝐢
β€’ In other words, if only one pi term is involved in a problem, it
must be equal to a constant.
18
Example 2
πœ”πœ” = 𝑓𝑓 𝐷𝐷, π‘šπ‘š, 𝛾𝛾
19
Steps 1 through 4
Variable
πœ”πœ”
𝐷𝐷
π‘šπ‘š
𝛾𝛾
Unit
1/s
m
kg
N/m3
Dimension
𝑇𝑇 βˆ’1
𝐿𝐿
𝑀𝑀
π‘€π‘€πΏπΏβˆ’2 𝑇𝑇 βˆ’2
𝑛𝑛 = 4 for πœ”πœ”, 𝐷𝐷, π‘šπ‘š, and 𝛾𝛾
π‘šπ‘š = 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇
∴ π‘Ÿπ‘Ÿ = 𝑛𝑛 βˆ’ π‘šπ‘š = 4 βˆ’ 3 = 1 (i.e., 1 pi term)
π‘šπ‘š repeating variables = 𝐷𝐷, π‘šπ‘š, 𝛾𝛾
20
Step 5 (and 6)
Ξ  = 𝐷𝐷 π‘Žπ‘Ž π‘šπ‘šπ‘π‘ 𝛾𝛾 𝑐𝑐 πœ”πœ” = 𝐿𝐿
Equate exponents:
Mass(𝑀𝑀):
Length(𝐿𝐿):
Time(𝑇𝑇):
= 𝑀𝑀
𝑏𝑏+𝑐𝑐
π‘Žπ‘Ž
𝑀𝑀
𝑏𝑏
π‘€π‘€πΏπΏβˆ’2 𝑇𝑇 βˆ’2
𝑐𝑐
𝐿𝐿 π‘Žπ‘Žβˆ’2𝑐𝑐 𝑇𝑇 βˆ’2π‘π‘βˆ’1 = 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0
𝑇𝑇 βˆ’1
𝑏𝑏 + 𝑐𝑐 = 0
π‘Žπ‘Ž βˆ’ 2𝑐𝑐 = 0
βˆ’2𝑐𝑐 βˆ’ 1 = 0
or,
π‘Žπ‘Ž = βˆ’1
𝑏𝑏 =
1
1
2
1
𝑐𝑐 = βˆ’
∴ Ξ  = 𝐷𝐷 βˆ’1 π‘šπ‘š2 𝛾𝛾 βˆ’2 πœ”πœ” =
1
2
πœ”πœ” π‘šπ‘š
𝐷𝐷 𝛾𝛾
21
Steps 7 through 8
Ξ =
β€’
πœ”πœ” π‘šπ‘š
𝐷𝐷
𝛾𝛾
=Μ‡
The dimensionless function is
where 𝐢𝐢 is a constant. Thus,
𝑇𝑇 βˆ’1
𝐿𝐿
πΉπΉπΏπΏβˆ’1 𝑇𝑇 2
πΉπΉπΏπΏβˆ’3
=Μ‡ 𝐹𝐹 0 𝐿𝐿0 𝑇𝑇 0
πœ”πœ” π‘šπ‘š
= 𝐢𝐢
𝐷𝐷 𝛾𝛾
πœ”πœ” = 𝐢𝐢 β‹… 𝐷𝐷
Therefore, if π‘šπ‘š is increased πœ”πœ” will decrease.
𝛾𝛾
π‘šπ‘š
22
Example 3
Δ𝑝𝑝 = 𝑓𝑓 𝑅𝑅, 𝜎𝜎
23
Example 3 –Contd.
Variable
Unit
Dimension
Δ𝑝𝑝
𝑅𝑅
𝜎𝜎
N/m2
m
N/m
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’2
𝐿𝐿
𝑀𝑀𝑇𝑇 βˆ’2
π‘šπ‘š = 3 for 𝑀𝑀, 𝐿𝐿, 𝑇𝑇
∴ π‘Ÿπ‘Ÿ = 𝑛𝑛 βˆ’ π‘šπ‘š = 3 βˆ’ 3 = 0
β‡’ No pi term?
24
Example 3 –Contd.
β€’
Since the repeating variables form a pi among them:
Δ𝑝𝑝𝑝𝑝
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’2 𝐿𝐿
0 0 0
=Μ‡
=
Μ‡
𝑀𝑀
𝐿𝐿 𝑇𝑇
𝜎𝜎
𝑀𝑀𝑇𝑇 βˆ’2
π‘šπ‘š should be reduced to 2 for 𝑀𝑀𝑇𝑇 βˆ’2 and 𝐿𝐿.
25
Example 3 –Contd.
Select 𝑅𝑅 and 𝜎𝜎 as the repeating variables:
Thus,
or,
Hence,
Ξ  = π‘…π‘…π‘Žπ‘Ž 𝜎𝜎 𝑏𝑏 Δ𝑝𝑝 = 𝐿𝐿
𝑀𝑀:
𝐿𝐿:
𝑇𝑇:
π‘Žπ‘Ž
𝑀𝑀𝑇𝑇 βˆ’2
𝑏𝑏
𝑏𝑏 + 1 = 0
π‘Žπ‘Ž βˆ’ 1 = 0
βˆ’2𝑏𝑏 βˆ’ 2 = 0
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’2 = 𝑀𝑀0 𝐿𝐿0 𝑇𝑇 0
π‘Žπ‘Ž = 1 and 𝑏𝑏 = βˆ’1
Ξ =
Δ𝑝𝑝𝑝𝑝
𝜎𝜎
26
Example 3 –Contd.
β€’
Alternatively, by using the 𝐹𝐹𝐹𝐹𝐹𝐹 system
Variable
Δ𝑝𝑝
𝑅𝑅
𝜎𝜎
Unit
N/m2
m
N/m
Dimension
πΉπΉπΏπΏβˆ’2
𝐿𝐿
πΉπΉπΏπΏβˆ’1
𝑛𝑛 = 3 for Δ𝑝𝑝, 𝑅𝑅, and 𝜎𝜎
π‘šπ‘š = 2 for 𝐹𝐹 and 𝐿𝐿
∴ π‘Ÿπ‘Ÿ = 3 βˆ’ 2 = 1 β‡’ 1 pi term
27
Example 3 –Contd.
With the 𝐹𝐹𝐹𝐹𝐹𝐹 system:
Thus,
or,
Hence,
Ξ 1 = π‘…π‘…π‘Žπ‘Ž 𝜎𝜎 𝑏𝑏 Δ𝑝𝑝 = 𝐿𝐿
𝐹𝐹:
𝐿𝐿:
π‘Žπ‘Ž
πΉπΉπΏπΏβˆ’1
1 + 𝑏𝑏 = 0
βˆ’2 + π‘Žπ‘Ž βˆ’ 𝑏𝑏 = 0
𝑏𝑏
πΉπΉπΏπΏβˆ’2 = 𝐹𝐹 0 𝐿𝐿0 𝑇𝑇 0
π‘Žπ‘Ž = 1 and 𝑏𝑏 = βˆ’1
Ξ =
Δ𝑝𝑝𝑝𝑝
𝜎𝜎
28
Common Dimensionless Parameters
for Fluid Flow Problems
β€’ Most common physical quantities of importance in fluid flow
problems are (without heat transfer):
Length
𝐿𝐿
𝐿𝐿
Velocity
Density
𝑉𝑉
𝜌𝜌
𝐿𝐿𝑇𝑇 βˆ’1
π‘€π‘€πΏπΏβˆ’3
Viscosity Gravity
πœ‡πœ‡
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’1
𝑔𝑔
𝐿𝐿𝑇𝑇 βˆ’2
Surface
tension
Compre
ssibility
Pressure
change
𝜎𝜎
𝐾𝐾
Δ𝑝𝑝
𝑀𝑀𝑇𝑇 βˆ’2
π‘€π‘€πΏπΏβˆ’1 𝑇𝑇 βˆ’2
π‘€π‘€πΏπΏβˆ’2 𝑇𝑇 βˆ’2
𝑛𝑛 = 8 variables
π‘šπ‘š = 3 dimension
∴ π‘Ÿπ‘Ÿ = 𝑛𝑛 - π‘šπ‘š = 5 pi terms (𝑅𝑅𝑅𝑅, 𝐹𝐹𝐹𝐹, π‘Šπ‘Šπ‘Šπ‘Š, 𝑀𝑀𝑀𝑀, 𝐢𝐢𝑝𝑝 )
29
1) Reynolds number
β€’
β€’
𝜌𝜌𝜌𝜌𝜌𝜌
𝑅𝑅𝑅𝑅 =
πœ‡πœ‡
Generally of importance in all types of fluid dynamics problems
A measure of the ratio of the inertia force to the viscous force
Inertia force π‘šπ‘šπ‘šπ‘š
=
=
Viscous force 𝜏𝜏𝜏𝜏
β€’
𝜌𝜌𝐿𝐿3
πœ‡πœ‡
𝑉𝑉
𝐿𝐿
𝑉𝑉
𝐿𝐿 = 𝜌𝜌𝜌𝜌𝜌𝜌
πœ‡πœ‡
𝐿𝐿2
𝑉𝑉 β‹…
– If 𝑅𝑅𝑅𝑅 β‰ͺ 1 (referred to as β€œcreeping flow”), fluid density is less important
– If 𝑅𝑅𝑅𝑅 is large, may neglect the effect of viscosity
𝑅𝑅𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 distinguishes among flow regions: laminar or turbulent value varies
depending upon flow situation
30
2) Froude number
𝐹𝐹𝐹𝐹 =
β€’
β€’
𝑉𝑉
𝑔𝑔𝑔𝑔
Important in problems involving flows with free surfaces
A measure of the ratio of the inertia force to the gravity force (i.e., the
weight of fluid)
Inertia force π‘šπ‘šπ‘šπ‘š
=
=
Gravity force 𝛾𝛾𝑉𝑉
𝑉𝑉
2
𝐿𝐿 = 𝑉𝑉
𝜌𝜌𝜌𝜌 𝐿𝐿3
𝑔𝑔𝑔𝑔
𝜌𝜌𝐿𝐿3
𝑉𝑉 β‹…
31
3) Weber number
β€’
β€’
β€’
πœŒπœŒπ‘‰π‘‰ 2 𝐿𝐿
π‘Šπ‘Šπ‘Šπ‘Š =
𝜎𝜎
Problems in which there is an interface between two fluids where surface
tension is important
An index of the inertial force to the surface tension force
π‘šπ‘šπ‘šπ‘š
Inertia force
=
=
Surface tension force 𝜎𝜎𝜎𝜎
𝜌𝜌𝐿𝐿3
𝑉𝑉 β‹…
𝜎𝜎𝜎𝜎
𝑉𝑉
2
𝐿𝐿 = πœŒπœŒπ‘‰π‘‰ 𝐿𝐿
𝜎𝜎
Important parameter at gas-liquid or liquid-liquid interfaces and when
these surfaces are in contact with a boundary
32
4) Mach number
𝑀𝑀𝑀𝑀 =
β€’
β€’
β€’
𝑉𝑉
π‘˜π‘˜β„πœŒπœŒ
=
𝑉𝑉
π‘Žπ‘Ž
π‘Žπ‘Ž: speed of sound in a fluid (a symbol 𝑐𝑐 is also used)
Problems in which the compressibility of the fluid is important
An index of the ratio of inertial forces to compressibility forces
𝑉𝑉
𝜌𝜌𝐿𝐿3 𝑉𝑉 β‹…
Inertia force
π‘šπ‘šπ‘šπ‘š
𝑉𝑉 2
𝐿𝐿
=
=
= 2
Compressibility force πœŒπœŒπ‘π‘ 2 𝐿𝐿2
πœŒπœŒπ‘π‘ 2 𝐿𝐿2
𝑐𝑐
β€’
β€’
(Note: Cauchy number, 𝐢𝐢𝐢𝐢 = 𝑉𝑉 2 ⁄𝑐𝑐 2 = π‘€π‘€π‘Žπ‘Ž2 )
Paramount importance in high speed flow (𝑉𝑉 β‰₯ 𝑐𝑐)
If 𝑀𝑀𝑀𝑀 < 0.3, flow can be considered as incompressible
33
5) Pressure Coefficient
𝐢𝐢𝑝𝑝 =
β€’
β€’
Δ𝑝𝑝
πœŒπœŒπ‘‰π‘‰ 2
Problems in which pressure differences, or pressure, are of interest
A measure of the ratio of pressure forces to inertial forces
Pressure force Δ𝑝𝑝𝐿𝐿2
Δ𝑝𝑝𝐿𝐿2
Δ𝑝𝑝
=
=
=
𝑉𝑉
Inertia force
π‘šπ‘šπ‘šπ‘š
πœŒπœŒπ‘‰π‘‰ 2
𝜌𝜌𝐿𝐿3 𝑉𝑉 β‹…
𝐿𝐿
β€’
Euler number:
β€’
Cavitation number:
𝑝𝑝
𝐸𝐸𝐸𝐸 =
πœŒπœŒπ‘‰π‘‰ 2
𝐢𝐢𝐢𝐢 =
𝑝𝑝 βˆ’ 𝑝𝑝𝑣𝑣
1
πœŒπœŒπ‘‰π‘‰ 2
2
34
Appendix A: Inspection Method
β€’
Steps 1 through 3 of the exponent method are the same:
Δ𝑝𝑝ℓ = 𝑓𝑓 𝐷𝐷, 𝜌𝜌, πœ‡πœ‡, 𝑉𝑉
Δ𝑝𝑝ℓ
πΉπΉπΏπΏβˆ’3
𝐷𝐷
𝐿𝐿
𝜌𝜌
πΉπΉπΏπΏβˆ’4 𝑇𝑇 2
πœ‡πœ‡
πΉπΉπΏπΏβˆ’2 𝑇𝑇
𝑉𝑉
𝐿𝐿𝑇𝑇 βˆ’1
π‘Ÿπ‘Ÿ = 𝑛𝑛 βˆ’ π‘šπ‘š = 5 βˆ’ 3 = 2
35
Appendix A: Inspection Method – Contd.
β€’
β€’
Let Ξ 1 contain the dependent variable (Δ𝑝𝑝ℓ in this example)
Then, combine it with other variables so that a non-dimensional product will result:
To cancel 𝐹𝐹,
To cancel 𝑇𝑇,
Then, to cancel 𝐿𝐿,
πΉπΉπΏπΏβˆ’3
𝐿𝐿
Δ𝑝𝑝ℓ
=Μ‡
=Μ‡ 2
𝑇𝑇
𝜌𝜌
πΉπΉπΏπΏβˆ’4 𝑇𝑇 2
Δ𝑝𝑝ℓ 1
𝐿𝐿
=
Μ‡
𝑇𝑇 2
𝜌𝜌 𝑉𝑉 2
Δ𝑝𝑝ℓ
1
𝐷𝐷
=
Μ‡
𝐿𝐿
πœŒπœŒπ‘‰π‘‰ 2
∴ Π1 =
1
𝐿𝐿𝑇𝑇 βˆ’1
2
=Μ‡
𝐿𝐿 =Μ‡ 𝐿𝐿0
1
𝐿𝐿
Δ𝑝𝑝ℓ 𝐷𝐷
πœŒπœŒπ‘‰π‘‰ 2
36
Appendix A: Inspection Method – Contd.
β€’
Select the variable that was not used in Ξ 1 , which in this case πœ‡πœ‡, and repeat the
process:
To cancel 𝐹𝐹,
To cancel 𝑇𝑇,
Then, to cancel 𝐿𝐿,
πœ‡πœ‡
πΉπΉπΏπΏβˆ’2 𝑇𝑇
𝐿𝐿2
=Μ‡
=Μ‡
𝜌𝜌
πΉπΉπΏπΏβˆ’4 𝑇𝑇 2
𝑇𝑇
πœ‡πœ‡ 1
𝐿𝐿2
=Μ‡
𝑇𝑇
𝜌𝜌 𝑉𝑉
πœ‡πœ‡ 1
=Μ‡ 𝐿𝐿
πœŒπœŒπ‘‰π‘‰ 𝐷𝐷
∴ Π2 =
1
=Μ‡ 𝐿𝐿
𝐿𝐿𝑇𝑇 βˆ’1
1
=Μ‡ 𝐿𝐿0
𝐿𝐿
πœ‡πœ‡
𝜌𝜌𝜌𝜌𝜌𝜌
37
Appendix B: Step-by-step Method*
*by Ipsen (1960). The pi theorem and Ipsen method are quite different. Both are useful and interesting.
38
Appendix B: Step-by-step Method – Contd.
39
Appendix B: Step-by-step Method – Contd.
40