Retrieval of Quantitative and Qualitative Information about Plant Pigment Systems from High Resolution Spectroscopy Susan L. Ustin1, Gregory P. Asner2, John A. Gamon3, K. Fred Huemmrich4, Stéphane Jacquemoud5, Michael Schaepman6, and Pablo Zarco-Tejada7 1University of California Davis 95616 (USA), [email protected], 2Carnegie Institution of Washington, Stanford, CA, USA, 3California State University Los Angeles, CA, USA, 4NASA GSFC, Greenbelt, MA, USA, 5Institut de Physique du Globe de Paris, 6Wageningen University, NL, 7Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, ES Photosynthesis B-G Bacteria 0% O2 Photosynthesis Green Algae Eukaryotes Prokaryotes 0.2% O2 Prokaryote cells Green algal symbiont Red algal symbiont 21% O2 Light Harvesting Complexes (Photosystems I, II) Photosystem I PS II PS II PS II P700 RC Absorption Coefficients for Common Photosynthetic Pigments Characteristic of: Blue-Green Bacteria (cyanobacteria) Red algae Characteristic of: Green algae & all Land Plants Photosynthetic pigments: excitation energy transfer Visible Spectrum (400-700 nm) Energy Transfer (40~50%) carotenoides Chl b Thermal Emergy Transfer (100%) Energy Transfer (40~50%) Chl a Thermal Reaction Center Source : Ismaël Moya (LMD-IPSL) Fluorescence (650~800nm) Stress: Loss of Chlorophyll & Increase in Carotenoids Chemical Structures of Pigments are Known β-Cryptoxanthin Lycopene α-Carotene β-Carotene Xanthphylls: Lutein Zeaxanthin Violaxanthin Abtheraxathin Anthocyanin + glucose β-carotene Chlorophyll a, b, d Leaf Senescence Follows Consistent Pattern of Pigment Changes Ì chlorophylls Ê Anthocyanin Ê Carotenoids Ê Xanthophylls Ê “Brown” pigment Wavelength, nm Pigment Composition Varies between Species, even Closely Related Ones Mature Valley Oak (deciduous) vs. Coast Live Oak (evergreen) Reflectance and Pigment Composition & Concentrations Ustin et al. 1998 CARBON EAU PIGMENTS LAI LAD Variability in Pigment Composition and FieldSpec® FR portable spectroradiometer Concentration in Vegetation Source : Mid-America Remote Sensing Center - Murray State University 4000.00 3500.00 Chlorophyll a (ug/g) 3000.00 SAVI pigment comparison Salicornia virginica Pigment Concentration (phenology) 94 Fall Xantho y = 10.816x + 49.339 y = 11.379x + 20.117 R2 = 0.9477 R2 = 0.9907 y = 23.815x - 533.35 y = 10.656x + 105.64 R2 = 0.6966 R2 = 0.9937 B-Carotene ▲, ▲ Fall ▲ Spring y = 7.3292x - 84.654 R2 = 0.9076 94 Fall Chlo-b y = 11.639x - 552.42 R2 = 0.9658 94 Fall b-Caro y = 8.292x + 8.2362 R2 = 0.9921 94 SpringChlo-b y = 8.9612x - 149.11 R2 = 0.9912 94 Fall Tubs Xantho 94 Spring Xantho 94 Spring b-Caro 94 Fall Tubs Chlo-b 94 Fal Tubs b-Caro 2500.00 95 Spring Xantho Xanthophyll ♦, ♦ Fall ♦ Spring 2000.00 95 Spring Chlo-b 95 Spring b-Caro Chlorophyll b 1500.00 ■, ■ Fall ■ Spring 1000.00 y = 3.181x - 3.221 R2 = 0.9029 y = 2.8876x + 100.47 R2 = 0.986 y = 3.0191x - 9.7034 R2 = 0.9776 y = 3.1251x - 44.803 R2 = 0.9894 500.00 0.00 0.00 200.00 400.00 600.00 800.00 1000.00 1200.00 Xanthophyll, Chlorophylland b, b-Carotene concentrations (ug/g) B-Carotene, Xanthophyll, Chlorophyll b Concentrations (μg/g) Spartina foliosa Pigment Concentration (salinity, phenology) SPFO pigment concentration (salinity) 3500.00 3000.00 βCarotene ♦ Spring Mouth ▲Spring River ▲ Fall River ▲ b-Carotene Chlorophyll a (ug/g) ▲▲ 2500.00 Fall river b-CARO Fall river CHLO-b Xanthophyll ▲ ♦ Spring Mouth ▲ ▲Spring River ▲ Fall River Xanthophyll Xanthophyll ▲ Fall river XANTHO Spring mouth b-CARO Spring river b-CARO ▲ Spring mouth CHLO-b Spring river CHLO-b Spring mouth XANTHO 2000.00 1500.00 ▲ ▲ ♦ ♦ ♦ ♦♦ ▲ ▲ ▲ ▲ ▲ ▲ ♦ ▲ ▲ ▲▲ ♦ ♦ ♦ Chlorophyll b ♦ Spring Mouth Chlorophyll Chlorophyll b b ▲Spring River ▲ Fall River 1000.00 500.00 Spring river XANTHO ♦ 0.00 0.00 200.00 400.00 600.00 800.00 1000.00 b-Carotene, Chlorophyll b, Xanthophyll (ug/g) 1200.00 Xanthophyll Cycle: Light Mediated Photosynthesis Zeaxanthin Antheraxanthin Antheraxanthin Violaxanthin Pigment Indexes AVIRIS IMAGE CUBE ANTHOCYANINS CHLOROPHYLL CAROTENOIDS RGB IMAGE: RED=ANTHOCYANINS GREEN=CHLOROPHYLL BLUE=CAROTENOIDS See Rahman et al. 2001 Gamon & Colleagues, From Ustin et al., 2004 drought year no data 0 50 0.2 -0.2 Adenostoma fasciculatum 0.1 4 3 2 1 (c) PRI Chl index Pigments 0.3 PRI 0.0 0.2 -0.1 0.1 01 /0 1/ 20 05 01 /0 1/ 20 04 01 /0 1/ 20 03 01 /0 1/ 20 02 Adenostoma sparsifolium 4 3 2 1 [Chl total]/[V+A+Z+L] 0.4 [Chl total]/[V+A+Z+L] PRI Chl index Pigments 0.3 01 /0 1/ 20 01 100 Mean Diurnal cycle For Month 0 (b) -0.1 -0.3 150 Precipitation (mm) 20 fire 0 Air temperature (Co) 40 1000 0.0 PRI 60 Chlorophyll index 2000 200 (a) Chlorophyll index PAR (μmolesm-2s-1) PAR Air temp. ppt. José Alfonso Silva Sepúlveda, 2006 Honors Thesis CSU-LA Leaf photochemical reflectance index (PRI) versus (a)de-epoxidation of the xanthophyll cycle pigments normalized to chlorophyll and (b) total xanthophylls cycle pigments normalized to chlorophyll 0.04 (a) (b) PRI 0.00 -0.04 P=0.008 r ²=0.719 -0.08 10 15 20 25 30 [Chl t]/([Z]+0.5[A]) r ²=0.525 6 8 P=0.042 10 12 14 16 18 20 22 [Chl t]/[V+A+Z] Adenostoma fasciculatum (black circles) Adenostoma sparsifolium (white circles) Site: Skye Oaks, California; Chaparral José Alfonso Silva Sepúlveda, 2006 Honors Thesis CSU-LA EO-1 Hyperion Hyperspectral Physiological Indices PRI = photochemical reflectance index CRI = carotenoid reflectance index NDVI = normalized difference vegetation index CWR = canopy water retrieval (curve-fitting, not reflectance index) NDVI CWR PRI G. Asner et al., In Press Ecosystems CRI Vegetation Indices Related to Vapor Pressure Deficit 0 .9 0 1 .5 0 .8 0 0 .7 5 1 .0 0 .7 0 0 .5 0 .6 5 4- 00 .00 04 PRI 1 .0 3000 -0 .0 8 2500 Hawai’i Volcanoes National Park 1 .0 0 .5 -0 .1 0 2000 0 .5 1 0 /1 /2 0 0 4 1 2 /1 /2 0 0 4 2 /1 /2 0 0 5 O h ia , S it e 1 O h ia , S it e 2 M y r ic a , S it e 1 M y r ic a , S it e 2 M ix e d O h ia - M y r ic a V P D 0 .0 0 2 2 Carotenoid Pigments (CRI) 1 .5 1 .5 3500 -0 .0 6 1- 05 .01 02 8 /1 /2 0 0 4 0 .0 0 2 4 CRI 0 .0 2 .0 2 .0 h ia , S it e 1 h ia , S it e 2 y r ic a , S it e 1 y r ic a , S it e 2 ix e d O h ia - M y r ic a P D 0 .0 0 2 0 0 .0 0 1 8 0 .0 4 /1 /2 0 0 5 0 .0 2 .0 1 .5 0 .0 0 1 6 1 .0 0 .0 0 1 4 0 .0 0 1 2 0 .5 0 .0 0 1 0 0 .0 0 0 8 0 .0 0 0 6 8 /1 /2 0 0 4 1 0 /1 /2 0 0 4 1 2 /1 /2 0 0 4 2 /1 /2 0 0 5 Vapor Pressure Deficit 0 .0 4 /1 /2 0 0 5 Mean Vapor Pressure Deficit Pa) Weekly Vapor Pressure Deficit (k(kPa) O O M M M V 2 Canopy Light-use Water Retrieval Efficiency(μm (PRI) H O; CWR) 0 .6 0 4- 05 .00 02 Weekly Vapor Pressure Deficit (k Pa) Canopy Greenness (NDVI) NDVI 0 .8 5 Weekly Vapor Pressure Deficit (k Pa) 2 .0 Hawai’i Volcanoes National Park Ohia, Site 1 (native) Myrica, Site 1 (n-fixing invasive) Myrica, Site 2 Mixed Ohia-Myrica Satellite Hyperspectral Physiological Indices vs. Top-of-canopy Leaf Pigments Measured in the Field PRI CRI PRI CRI Fitting Multiple Gaussian to Spectrum to Identify & Quantify Multiple Pigments Rd derive the area σ λ0 CSTARS Acala Cotton Leaf Reflectance, ASD Data Whiting et al. Chronic stress - Crown Transformation a b c Michael Schaepman Norway spruce functional crown parts: a/ juvenile part b/ production part c/ saturation part Spruce Damage from Austria: Acid Deposition Chl a/b Ratio Mean Spruce Needles Spruce Needle Damage Class Spruce Branch Samples from Cliff Banninger, Gratz Austria CSTARS: Pigment Analysis Chlorophyll Retrieval from Indexes, ANMB, PROSPECT T e s t i n g d a t a Comparison of the RMSE between measured and retrieved Cha+b Spectral Based Approaches: Spectral Identification Methods Reflectance Chlorophyll a Foreground/Background Vectors Chlorophyll b Claudia Castenada & Jorge Pinzon, et al. Measured & Predicted Pigments Needle Class 1, 2: Chl a Needle Class 1, 2: Chl b Measured Predicted Measured Predicted Regression 95% C.I. R2=0.57 Regression R2=0.78 Needle Class 3, 4: Chl a Needle Class 3, 4: Chl b Measured Predicted Measured Predicted Regression R2=0.50 Regression R2=0.42 First strategy: Pigments chlorophyll a chlorophyll b β-carotene The end S. Knap & N. Knight, 2001, Flora, Harry N Abrams, 80 pages.
© Copyright 2026 Paperzz