Corso di laurea in Scienza della Alimentazione e Nutrizione Umana (SANU) Prof. Stefano Fiorucci Apparato digerente Anatomia e fisiologia Sintomi Approccio clinico Metodiche di studio 1 Small bowel anatomy 3 Small bowel immune system 4 Glucose –endocrine axis 5 6 Carbohydrates Carbohydrates are the most important energy-containing components of the diet. The energetic value of most carbohydrates is 17.5 kJ per g. A daily diet of 400 g carbohydrates covers 7 000 kJ, which is 56% of the usable energy in a diet of 12 500 kJ daily. The formation of metabolic water on a mixed diet is 0.032 g of water per J. The common sources of digestible carbohydrates are starches (amylose), table sugar, fruits and milk. Plant and animal starch (amylopectin and glycogen) are branched molecules of glucose monomers. Indigestible carbohydrates are present in vegetables, fruits and grains (cellulose, hemicellulose, pectin) and in legumes (raffinose). Indigestible carbohydrates are also referred to as dietary fibres. Digestion of starches to simple hexoses occurs in two phases: The luminal phase begins in the mouth with the action of salivary amylase (ptyalin), In the small intestine The starch polymer is reduced to maltose, maltriose and a-limit dextran or dextrins. The three substrates are pushed through the intestine and are now ready for the brush-border phase. Some of the substrate molecules get into contact with the brush-borders of the absorbing mucosal cell via the unstirred water layer. Enterocytes carry disaccharidases and trisaccharidases (oligosaccharidases) on their surface that cleave these substrates to glucose, G. Milk sugar (lactose) and cane sugar (sucrose) only require a brushborder phase of digestion, since they are disaccharides. Sucrose is reduced to glucose and fructose (G-F), and lactose to glucose and galactose (G-Ga) by the action of disaccharidases (sucrase and lactase). Proteins The typical Western diet contains 100 g of protein, which is equivalent to an energy input of 1700 kJ daily, although an adult needs only less than one g pr kg of body weight. This luxury combustion is an inappropriate use of global resources. Moreover, a high protein intake implies a long-term risk of uric acid accumulation from purine degradation ( Meats, fish, eggs, and diary products are high in proteins and expensive. Vegetable proteins are not as expensive as animal proteins. Digestion of dietary proteins begins in the stomach, with the action of the gastric enzyme pepsin (pH optimum is 1), Pepsin is produced from pepsinogen in the presence of HCl. Proteins The digestion is continued in the intestine by proteolytic enzymes of the pancreas. Enteropeptidase converts trypsinogen to trypsin. Trypsin acts auto-catalytically to activate trypsinogen, and also convert chymo-trypsinogen, pro-carboxy-peptidases A/B, and pro-elastase to their active form. When the chyme is pushed into the duodenum, the pancreatic juice neutralises the chyme and the activity of pepsin is stopped. The proteolysis in the small intestine plays the major role, because the digestion and absorption of dietary protein is not impaired by total absence of pepsin. Cytosolic peptidases from the enterocytes and brush border peptidases from the brush borders of the villous cells then cleave the small peptides into single amino acids (Enteropeptidase, amino-polypeptidase and di-peptidases). The end products of protein digestion by pancreatic proteases and brush border peptidases are di- and tri-peptides and amino acids. The cytosolic peptidases are abundant and particularly active against di- and tri-peptides. Lipids The typical Western diet contains 100 g of lipids (3900 kJ) daily. Most of the dietary lipids consumed are triglycerides (only 2-4% is made up of phospholipids, cholesterol, cholesterol esters etc). Lipids would comprise just above 30% (ie, 100 g = 3900 kJ) of a standard diet of 12 500 kJ daily. An optimal diet should contain only 20% lipids, such as the lipids of fish oil and olive oil. Colon 18 Integrated meta-omics 19 Lepage P et al. Gut 2013;62:146-158 The human GI microbiota The gene catalogue - characterized by a metagenomic approach - indicates the microbe genome encodes for 3,364 non-redundant genes suggesting that no more than ~1,150 bacterial species are abundant enough to be detected in the feces. With most individuals harboring approximately 160 different bacterial species and 99% of intestinal microbiome derives from 30-40 species M Arumugam et al. Nature 000, 1-7 (2011) doi:10.1038/nature09944 21 Functional and phylogenetic profiles of human gut microbiome. The relationship between gut mirobiota and humans is a symbiotic relationship. Though people can survive with no gut flora, the microorganisms perform a host of useful functions, such as fermenting unused energy substrates, training the immune system preventing growth of harmful species, regulating the development of the gut, producing vitamins and producing hormones to direct the host to store fats. However, in certain conditions, some species are capable of causing diseases 22 M Arumugam et al. Nature 2011 doi:10.1038/nature09944 Enterotypes of the human gut microbiome 23 M Arumugam et al. Nature 000, 1-7 (2011) doi:10.1038/nature09944 The structure of the human intestinal microbiota across the life cycle. Kostic A D et al. Genes Dev. 2013;27:701-718 24 16S rRNA gene surveys reveal a clear separation caused by socio-economic factor High fat/low fiber diet Low fat /high fiber diet De Filippo C et al. PNAS 2010;107:14691-14696 BACTERIOID PREVOTEL 25 26 Science Express on 6 June 2012, doi: 10.1126/science.1223813 Main metabolites Main Bacteria Signaling pathways Short-chain fatty acids (SCFA): acetate, propionate, butyrate, isobutyrate and others Clostridial clusters IV and XIVa of Firmicutes, including species of Eubacterium, Roseburia, Faecalibacterium, and Coprococcus Lactobacillus, Bifidobacteria, Enterobacter, Bacteroides, Clostridium Energy source for colonic epithelial cells, antitumor activities on colorectal cancer. Modulate insulin resistance in metabolic syndrome and type 2 diabetes Essential for absorption of dietary fats and lipidsoluble vitamins and act as signaling molecule through FXR, GPBAR1, PXR, VDR and other BARs* to regulate triglycerides, cholesterol, glucose and energy homeostasis. Faecalibacterium prausnitzii, Bifidobacterium Impact on lipid and glucose metabolism. Potential mediators in nonalcoholic fatty liver disease, diet induced obesity, type II diabetes, and cardiovascular disease. AhR ligands. Anti-inflammatory effects. Unknown metabolic activities Bile acids: CA, hyocholic acd, DCA, CDCA, α-MCA, β-MCA, ω-MCA, TCA, GCA, TCDCA, GCDCA, , TαMCA, T-βMCA, LCA, UDCA, hyodeoxycholic acid, GDCA, TDCA, tauro-hyocholic acid Choline metabolites: methylamine, dimethylamine, trimethylamine, trimethylamine-N-oxide, dimethylglycine, betaine Indole derivatives: N-acetyltryptophan, Clostridium sporogenes, E. coli indoleacetate, indoleacetylglycine, indole, indoxyl sulfate, indole-3-propionate, melatonin, melatonin 6sulfate, serotonin, 5-hydroxyindole Vitamins: vitamin K, vitamin B12, biotin, folate, thiamine, riboflavin, pyridoxine D-lactate, formate, methanol, ethanol, succinate, lysine, glucose, urea, α-ketoisovalerate, creatine, creatinine, endocannabinoids, 2arachidonoylglycerol (2-AG), Narachidonoylethanolamide, LPS, etc. Bifidobacterium Polyamines Campylobacter jejuni, Clostridium saccharolyticum Clostridium difficile, F. prausnitzii, Bifidobacterium, Subdoligranulum, Lactobacillus Bifidobacterium, Roseburia, Lactobacillus, Klebsiella, Enterobacter, Citrobacter, Clostridium Phenolic, benzoyl, and phenyl derivatives Lipids: conjugated fatty acids, LPS, peptidoglycan, acylglycerols, sphingomyelin, cholesterol, phosphatidylcholines, phosphoethanolamines, triglycerols Bacteroides, Pseudobutyrivibrio, Ruminococcus, Faecalibacterium, Subdoligranulum, Bifidobacterium, Atopobium, Firmicutes, Lactobacillus Complementary source to endogenous vitamins. Unclear metabolic effects Variety of biological functions. Unclear metabolic Anti-inflammatory and antitumoral effects. Unclear metabolic effects PXR ligands. Regulation of xenobiotic metabolism. Unclear metabolic effects Anti-inflammatory and pro-inflammatory activities. Modulation of immune system. Act on insulin 31 receptor and insulin sensitivity. Regulation of cholesterol and tryglycerols metabolism The GI microbiota shapes the bile acids signaling Fiorucci & Distrutti, Trends Mol Med, 2015 in press Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice Science 6 September 2013: Vol. 341 no. 6150 Bidirectional interactions within the gut microbiota/brain axis Nature Reviews Neuroscience 13, 701-712 (October 2012) | doi:10.1038/nrn3346 Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour 34 Bidirectional interactions within the gut microbiota/brain axis 35 Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015 Mar 2;125(3):926-38. doi: 10.1172/JCI76304. Endoscopia Radiologia Radiologia Colonscopia virtuale Videocapsula Volume e composizione delle secrezioni del tubo digerente SECREZIONE Volume ml/24 h Saliva Succo gastrico Succo duodenale Succo digiuno-ileale Bile Succo pancreatico 500-2000 500-3000 100-2000 100 - 900 500-1000 100 - 800 Na + K+ Cl HCO3mEq/l mEq/l mEq/l mEq/l 10 60 140 140 140 145 26 10 5 5 5 5 10 130 80 104 100 75 30 30 35 115 DIARREA - 1 Manca una definizione assoluta, perchè disturbo interpretabile molto soggettivamente emissione rapida di feci abbondanti e poco formate Tra liquidi ingeriti, alimenti e secrezioni, ogni giorno percorrono il tubo digerente circa 10 litri. - il 90% è assorbito dall’ileo (arrivano al cieco circa 1000 ml) - il 90% è assorbito dal colon (volume fecale: circa 100 ml) - il colon può compensare fino a 4-5 litri Una riduzione anche modesta della capacità di assorbimento colico o una riduzione importante dell’assorbimento ileale possono provocare diarrea, ma non tutte le diarree s’instaurano con questo meccanismo DIARREA - 2 Nella diarrea sono importanti non solo l’osservazione dei caratteri organolettici (specie presenza di sangue, feci normocromiche o “biliari”, steatorrea), ma anche ritmi, rapporti coi pasti, durata (diarree acute o croniche), concomitanza col dolore. Nel complesso, il sintomo è aspecifico, in quanto riscontrabile in numerose malattie, per lo più gastrointestinali, o un condizioni non francamente patologiche (banali intolleranze alimentari, stress, etc.) CLASSIFICAZIONE DELLE DIARREE • Osmotiche: lassativi osmotici, malassorbimenti, intestino corto • Secretorie: enterocoliti batteriche (endotossine), e virali, lassativi “irritanti”, sali biliari secondari, tumori intestinali ormonosecernenti • Essudative: M. di Crohn e colite ulcerosa, colite ischemica, colite postattinica (da raggi), • Da alterata motilità: colon irritabile, fattori psico-emozionali, reazioni neurovegetative, stati disendocrini e dismetabolici CAUSE DI DIARREA CRONICA STIPSI Ridotta frequenza dell’evacuazione delle feci con loro permanenza nel colon o nel retto, associata o meno a difficoltosa evacuazione, in assenza di quadro occlusivo (distensione addome, alvo chiuso, vomito) Anche la stipsi si presta a interpretazioni soggettive che ne rendono difficile la valutazione. Si ammette che si possa parlare di stipsi per meno di due evacuazioni settimanali, ma esistono evacuazioni, anche più frequenti, ma molto difficoltose (DISCHEZIA) Le STIPSI sono di 2 tipi (entrambi nel m. di Hirschprung) • Origine colica: di solito fattori alimentari, colite spastica, inattività e invalidità, m. neuromuscolari, stati depressivi, farmaci, m. disendocrine e dismetaboliche, disagio “ambientale” Importante: forme idiopatiche, con rallentato transito colico • Origine ano-rettale (dischezia): numerose condizioni organiche o funzionali (ipertono del muscolo puborettale, alterazioni sensibilità o riflessi defecatori, prolasso mucoso, rettocele, etc.
© Copyright 2026 Paperzz