Regulation of Coronary Blood Flow 24-04-2104 Dirk J. Duncker ETP April 24-26, 2014 Regulation of Coronary Blood Flow • • • • Introduction Control of Coronary Resistance Vessels Autoregulation: Pressure Flow Relation Hemodynamic Effects of a Coronary Stenosis Duncker & Bache Physiol Rev 2008 Van de Hoeff et al J Mol Cell Cardiol 2012 Laughlin, …., Duncker Compr Physiol 2012 Canty & Duncker Braunwald’s Heart Disease 2014 ETP April 24-26, 2014 Cyclic Compression of the Coronary Microvasculature Systole Diastole Systole 120 Ao Pressure (mmHg) 80 LV 40 RV 0 LAD flow (ml/min) 120 60 0 Courtesy of Harold Laughlin RCA flow (ml/min) 20 10 0 GCV flow (ml/min) 160 80 0 0.0 ETP April 24-26, 2014 Duncker & Merkus 2004 0.4 0.8 Time (s) 1.2 Unique aspects of the coronary circulation • Cyclic compression of the vasculature • High resting myocardial metabolic rate Cardiac muscle 1 ml/min/g flow Skeletal muscle 0.1 ml/min/g flow High capillary density Cardiac muscle 3000-4000/mm2 Skeletal muscle 500-1000/mm2 High oxygen extraction Cardiac muscle 60-80% Skeletal muscle 20-30% Myocardial O2 balance during exercise (%) * 2.5 * 2.0 (%) * 1.5 50 * * * 40 * 100 0.5 0.0 ArtSO2 90 30 1.0 (%) (ml/min/g) Hct Hematocrit CBF Flow Coronary 3.0 CVSO2 20 10 0 * * * * 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 MVOMyocardial MVO 2 (ml/min/g)O consumption (ml/min/g) 2 (ml/min/g) 2 ETP April 24-26, 2014 Von Restorff et al Pfluegers Arch 1977 Myocardial O2 balance during exercise 60% 100% Contraction 20% O2 demand 20% Myocardial O2 balance ~0% 80% Heart Rate 60% Contractility LV work Basal metabolism Coronary flow 80% O2 supply 20% ETP April 24-26, 2014Physiol Reviews 2008 Duncker & Bache [O2]ART - [O2]CV Duncker & Bache Physiol Reviews 2008 Metabolic Vasodilation Exercise LVMBF = LV Myocardial Blood Flow ETP April 24-26, 2014 Laughlin, Davis,…., Bache, Merkus, Duncker Compr Physiol 2012 Laws of Hemodynamics • Darcy’s law ΔP = Flow x R Flow = ΔP R • Poiseuille’s law R= 8 hL r4 ETP April 24-26, 2014 ΔP P1 P2 Flow R P = pressure R = resistance L h r L = length r = radius h = viscosity R = resistance JR Levick An Introduction to Cardiovascular Physiology 2010 Regulation of Coronary Blood Flow • • • • Introduction Control of Coronary Resistance Vessels Autoregulation: Pressure Flow Relation Hemodynamic Effects of a Coronary Stenosis Duncker & Bache Physiol Rev 2008 Van de Hoeff et al J Mol Cell Cardiol 2012 Laughlin, …., Duncker Compr Physiol 2012 Canty & Duncker Braunwald’s Heart Disease 2014 ETP April 24-26, 2014 Distribution of Resistance in Coronary Microcirculation μ Chilian et al Am J Physiol 1989 μ Davis et al APS Handbook of Physiology 2008 Zhang, …, Chilian APS Handbook of Physiology 2008 Control of tissue blood flow “Blood goes where it is needed” John Hunter 1794 “He must have wondered how blood “knows” where it is needed?” LB Rowell JAP 2004 ETP April 24-26, 2014 The ultimate cardiac challenge Exercise Rest MAP (mmHg) Exercise at 5 km/h 100 50 100 LVP (mmHg) 50 0 5000 LV dP/dt (mmHg/s) 2500 L S 1 2 3 4 Exercise (km/h) 5 0 -2500 CBF (ml/min) 150 100 50 0 ETP April 24-26, 2014 Duncker et al. Circ Res 1998 Duncker & Merkus J Physiol 2007 Duncker & Bache Physiol Rev 2008 Laughlin, …, Duncker Compr Physiol 2012 Control of Coronary Microvascular Tone Neurohumoral influences Extravascular influences compression NE Endo- en Paracrine influences ANG II ACh histamine PCO2, H+, K+ bradykinin adenosine Endothelial influences PO2 Metabolic influences Platelets ETP April 24-26, 2014 Erythrocytes Duncker & Bache Physiol Reviews 2008 shear stress Metabolic influences Control of Coronary Microvascular Tone Platelets Erythrocytes shear stress NO O2 TXA2 5HT ATP P2Y Endothelium ECE TXA2 5HT M ACh α1 NE 5HT L-Arg ETB ETA NO PGI2 AA ETB cGMP H1 H2 P2X KCa KATP H2O2 cAMP O2 A2 KATP KCa CO2 ATP Cardiomyocyte ETP April 24-26, 2014 O2• - EDHF IP Smooth Muscle α2 B2 H1 COX-1 CYP450 ANG II AT1 α2 M eNOS ET-1 bET-1 ACE ANG I TXA2 ß2 KCa KV NE adenosine ADP O2 Duncker & Bache Physiol Reviews 2008 Regulation of Coronary Blood Flow • • • • Introduction Control of Coronary Resistance Vessels Autoregulation: Pressure Flow Relation Hemodynamic Effects of a Coronary Stenosis Duncker & Bache Physiol Rev 2008 Van de Hoeff et al J Mol Cell Cardiol 2012 Laughlin, …., Duncker Compr Physiol 2012 Canty & Duncker Braunwald’s Heart Disease 2014 ETP April 24-26, 2014 The ability of the heart to maintain flow constant in the face of a change in perfusion pressure without the intervention of any other external mechanism ETP April 24-26, 2014 (Courtesy of Bernard De Bruyne) www.cardio-aalst.be Autoregulation Coronary Autoregulation 200 150 125 www.cardio-aalst.be Coronary Blood Flow (mL/min) 175 100 75 50 25 0 25 50 75 100 125 150 175 200 Coronary Perfusion Pressure (mm Hg) ETP April 24-26, 2014 (Courtesy of Bernard De Bruyne) Rubio and Berne, Prog CV Disease 1975 Autoregulatory Range 200 150 125 www.cardio-aalst.be Coronary Blood Flow (mL/min) 175 100 75 50 25 0 25 50 75 100 125 150 175 200 Coronary Perfusion Pressure (mm Hg) ETP April 24-26, 2014 (Courtesy of Bernard De Bruyne) Rubio and Berne, Prog CV Disease 1975 μ Davis et al APS Handbook of Physiology 2008 μ Zhang, Rogers, Merkus, … Chilian APS Handbook of Physiology 2008 Coronary Pressure-Flow Relation ΔP = Flow x R Rmin = ΔP/Flowmax Cmax = 1/Rmin = Flowmax/ΔP P = pressure R = resistance C = conductance ETP April 24-26, 2014 Canty & Duncker Braunwald’s Heart Disease 2014 Coronary Pressure-Flow Relation ETP April 24-26, 2014 Canty & Duncker Braunwald’s Heart Disease 2014 Coronary Pressure-Flow Relation Subendocardial Vulnerability 20 ETP April 24-26, 2014 Canty & Duncker Braunwald’s Heart Disease 2014 Coronary Flow-Function Relation Subendocardial vulnerability ETP April 24-26, 2014 Canty Circ Res 1988; Canty et al Circulation 1990 Regulation of Coronary Blood Flow • • • • Introduction Control of Coronary Resistance Vessels Autoregulation: Pressure Flow Relations Hemodynamic Effects of a Coronary Stenosis Duncker & Bache Physiol Rev 2008 Van de Hoeff et al J Mol Cell Cardiol 2012 Laughlin, …., Duncker Compr Physiol 2012 Canty & Duncker Braunwald’s Heart Disease 2014 ETP April 24-26, 2014 Coronary Pressure-Flow Relation ETP April 24-26, 2014 Canty & Duncker Braunwald’s Heart Disease 2014 Stenosis PDISTAL PAORTA ETP April 24-26, 2014 Pressure Derived Fractional Flow Reserve, FFR FFR= Pd/Pao = 105/133 = 0.78 Aortic (Pao) Coronary (Pd) Coronary velocity CFR= 2.2 Adenosine ETP April 24-26, 2014 Assessment of Coronary Reserve Flow velocity wire PET/MRI/CT Perfusion Pressure wire Canty & Duncker Braunwald’s Heart Disease 2014 Regulation of Coronary Blood Flow • • • • Introduction Control of Coronary Resistance Vessels Autoregulation: Pressure Flow Relations Hemodynamic Effects of a Coronary Stenosis Duncker & Bache Physiol Rev 2008 Van de Hoeff et al J Mol Cell Cardiol 2012 Laughlin, …., Duncker Compr Physiol 2012 Canty & Duncker Braunwald’s Heart Disease 2014 ETP April 24-26, 2014 Coronary Pressure-Flow Relation Influence of Coronary Microvascular Disease ETP April 24-26, 2014 Canty & Duncker Braunwald’s Heart Disease 2014
© Copyright 2026 Paperzz