Math 230 Calculus II Practice problems for Exam II Exam II will be based on Sections 6.3*, 6.4*, 6.6, 6.8, 7.1, 7.2, 7.3, and 7.4. 1. Review all definitions from Sections 6.3*, 6.4*, 6.6, 6.8, 7.1, 7.2, 7.3, and 7.4. 2. Review all theorems from Sections 6.3*, 6.4*, 6.6, 6.8, 7.1, 7.2, 7.3, and 7.4. 3. Solve each equation for x. (a) e3x+1 = k (c) ln(ln x) = 1 (b) e2x − ex − 6 = 0 (d) ln(2x + 1) = 2 − ln x Answer: (a) 31 (ln k − 1); (b) ln 3; (c) ee ; (d) √ −1+ 1+8e2 . 4 4. Find the limit. (a) lim x→(π/2)+ etan x (b) lim− e3/(2−x) x→2 Answer: (a) 0; (b) ∞. 5. Differentiate the function. √ (a) f (x) = 1 + 2e3x (c) h(x) = x (b) g(x) = ee Answer: (a) √ 1 + xe−2x (d) k(t) = sin(et ) + esin t . 3x √ 3e ; 1+2e3x x +x (b) ee ; (c) e−2x (−2x+1) √ ; 2 1+xe−2x (d) et cos(et ) + esin t cos t. 6. Evaluate the integral Z 5 e dx (a) Z (b) etan x sec2 x dx −5 Z (c) ex (4 + ex )5 dx Answer: (a) 10e; (b) etan x + C; (c) 61 (4 + ex )6 + C. 7. Differentiate the function. √ (a) f (x) = ( x)x (c) h(x) = x5 + 5x (b) g(x) = (ln x)cos x (d) k(x) = log5 (xex ) √ x Answer: (a) 12 ( x)x (1 + ln x); (b) (ln x)cos x xcos − sin x ln ln x ; (c) 5x4 + 5x ln 5; (d) ln x 1 8. Find the inverse function of f (x) = log10 1 + . Answer: 10x1−1 . x 1 x+1 . x ln 5 9. Find the exact value of each expression. 1 −1 (a) sin 2 (c) sin−1 (sin(7π/3)) 2 −1 (d) tan sin 3 (b) sin−1 (sin(π/3)) √ Answer: (a) π/6; (b) π/3; (c) π/3; (d) 2/ 5. √ 10. Prove that cos sin−1 x = 1 − x2 . 11. Simplify the expression sin tan−1 x . Answer: √ x . 1+x2 12. Differentiate the function. √ (a) f (x) = x sin−1 x + 1 − x2 (c) h(θ) = tan−1 (cos θ) (b) g(x) = cos−1 (e2x ) 2x sin θ ; (c) − 1+cos Answer: (a) sin−1 x; (b) − √2e 2 θ. 1−e4x 13. Evaluate the integral. Z 1/2 sin−1 x √ (a) dx 2 1 − x 0 Z 1+x (b) dx 1 + x2 Z π/2 (c) 0 sin x dx 1 + cos2 x Answer: (a) π 2 /72; (b) tan−1 x + 12 ln(1 + x2 ) + C; (c) π/4. 14. Find the limit. cos x + x→(π/2) 1 − sin x ln x (b) lim √ x→∞ x 1 − sin x (c) lim x→π/2 csc x (ln x)2 (d) lim x→∞ x (a) √ (e) lim lim x→∞ (f) lim x→1 xe−x/2 1 x − x − 1 ln x (g) lim (1 − 2x)1/x x→0 (h) lim x1/x x→∞ Answer: (a) −∞; (b) 0; (c) 0; (d) 0; (e) 0; (f) 1/2; (g) 1/e2 ; (h) 1. 15. Evaluate the integral. Z (a) te−3t dt Z (b) Answer: (a) − 31 te−3t − 19 e−3t + C; (b) 16 x6 ln x − 16. Evaluate the integral. 2 1 6 x 36 + C. x5 ln x dx Z π/2 sin7 θ cos5 θ dθ. Answer: 1/120. (a) 0 Z (b) Z (c) Z (d) Z (e) Z (f) √ sin3 ( x) √ dx. Answer: x 2 3 √ √ cos3 ( x) − 2 cos x + C. t sin2 t dt. Answer: 41 t2 − 41 t sin 2t − 18 cos 2t + C. tan x sec3 x dx. Answer: 1 3 sec3 x + C. tan2 θ sec4 θ dθ. Answer: 1 5 tan5 θ + 31 tan3 θ + C. 1 − tan2 x dx. Answer: sec2 x 1 2 sin 2x + C. 17. Evaluate the integral Z 1 √ (a) x3 1 − x2 dx. Answer: 2/15. 0 2 √ 1 3 π √ dt. Answer: + − 41 . 24 8 √ 3 t2 − 1 t 2 Z √ 1 √ (c) dx. Answer: ln( x2 + 16 + x) + C. x2 + 16 Z √ √ √ (d) x2 + 2x dx. Answer: 21 (x + 1) x2 + 2x − 21 ln |x + 1 + x2 + 2x| + C. Z √ √ (e) x 1 − x4 dx. Answer: 14 sin−1 (x2 ) + 41 x2 1 − x4 + C. Z (b) 18. Evaluate the integral. Z 5x + 1 (a) dx. Answer: 21 ln |2x + 1| + 2 ln |x − 1| + C. (2x + 1)(x − 1) Z 4 3 x − 2x2 − 4 (b) dx. Answer: 76 + ln 23 . 3 2 x − 2x 3 Z 1 3 x − 4x − 10 (c) dx. Answer: 23 + ln 32 2−x−6 x 0 Z 2 x −x−6 (d) dx. Answer: 2 ln |x| − 21 ln(x2 + 3) − √13 tan−1 ( √x3 ) + C. x3 + 3x 3
© Copyright 2026 Paperzz