Calculus III-Final review Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-2, 4) and Q = (-9, -4). Find the position vector corresponding to PQ . B) -11, 0 C) 2, -4 D) -7, -8 A) 7, 8 1) Express the vector in the form ai + bj. 2) P1 P2 if P1 is the point (1, -1) and P2 is the point (3, -4) A) v = 2i - 3j B) v = -i + 3j C) v = -2i + 3j Find the indicated vector. 3) Let u = 9, 9 , v = 1, 4 . Find u - 4v. B) 13, 25 A) 5, -7 2) D) v = -2i - 3j 3) C) 18, -20 D) 10, -52 Express the vector in the form ai + bj + ck. 4) P1 P2 if P1 is the point (3, 3, 4) and P2 is the point (5, 0, 0) A) v = 2i - 3j - 4k B) v = -2i + 3j - 4k C) v = -2i + 3j + 4k 5) 3u - 5v if u = 1, 1, 0 and v = 3, 0, 1 A) v = -12i + 3j - 5k C) v = 3i + 3j - 5k 4) D) v = -2i - 3j + 4k 5) B) v = -12i + 8j - 5k D) v = 18i + 3j - 5k Find an equation for the sphere with the given center and radius. 6) Center (-7, 5, 0), radius = 4 A) x2 + y2 + z 2 + 14x + 10y = -58 B) x2 + y2 + z 2 + 14x - 10y = -58 C) x2 + y2 + z 2 - 14x - 10y = -58 Find v · u. 7) v = 5i - 2j and u = -8i - 7j A) -3i - 9j 6) D) x2 + y2 + z 2 - 14x + 10y = -58 7) B) -54 C) -26 D) -40i + 14j Find the angle between u and v in radians. 8) u = 10i + 3j + 5k, v = 7i + 6j + 9k A) 1.11 B) 1.49 C) 0.47 D) 1.10 9) u = 7j - 9k, v = 3i - 5j - 2k A) -0.24 C) 1.82 D) 1.57 8) 9) B) 1.67 Find proj v u. 10) v = i + j + k, u = 4i + 12j + 3k 19 19 19 A) i + j + k 13 13 13 C) 10) 19 19 19 B) i + j + k 169 169 169 19 19 19 i + j + k 3 3 3 D) 1 20 20 20 i + j + k 3 3 3 11) 11) v = k, u = 2i + 6j + 9k 18 54 81 A) i + j + k 121 121 121 18 54 81 B) i + j + k 11 11 11 C) 9k D) 9 k 121 Solve the problem. 12) How much work does it take to slide a box 47 meters along the ground by pulling it with a 196 N force at an angle of 11° from the horizontal? A) 192.4 joules B) 9043 joules C) 40.77 joules D) 9212 joules Find the magnitude and direction (when defined) of u × v. 13) u = 2i, v = 8j A) 16; -k B) 2; 8k 14) u = 2i + 2j - k, v = -i + k 1 2 2 A) 3; i + j - k 3 3 3 12) 13) C) 16; k D) 16; 16k 2 1 2 C) 9; i - j + k 9 9 9 2 1 2 D) 3; i - j + k 3 3 3 14) 2 1 2 B) 9; i + j - k 9 9 9 Solve the problem. 15) Find the area of the parallelogram determined by the points P(7, -5, 5), Q(-1, -2, 8), R(6, 7, -2) and S(-2, 10, 1). 12,835 13 91 A) B) C) 13 91 D) 12,835 2 2 Find the triple scalar product (u x v) · w of the given vectors. 16) u = i + j + j; v = 3i + 7j + 5k; w = 8i + 6j + 2k A) -88 B) 72 17) u = 4i + 2j - j; v = 10i + 5j - 5k; w = 1i + 6j - 3k A) 55 B) 95 15) 16) C) 56 D) -20 C) -175 D) -45 17) Find parametric equations for the line described below. 18) The line through the points P(-1, -1, -7) and Q(5, 2, -3) A) x = t - 6, y = t - 3, z = -7t - 4 B) x = 6t + 1, y = 3t + 1, z = 4t + 7 C) x = 6t - 1, y = 3t - 1, z = 4t - 7 D) x = t + 6, y = t + 3, z = -7t + 4 18) Find a parametrization for the line segment beginning at P1 and ending at P2 . 19) 19) P1 (6, -5, 3) and P2 (0, -5, -4) B) x = 6t, y = -5t, z = 7t - 4, 0 ≤ t ≤ 1 D) x = -6t + 6, y = -5, z = -7t + 3, 0 ≤ t ≤ 1 A) x = 6t, y = -5, z = 7t - 4, 0 ≤ t ≤ 1 C) x = -6t + 6, y = -5t, z = -7t + 3, 0 ≤ t ≤ 1 Solve the problem. 20) Find symmetric equations for the line through the points P(-1, -1, -3) and Q(2, 3, 4). x - 1 y + 1 z + 3 x + 1 y + 1 z + 3 A) = = B) = = 3 4 7 3 4 7 C) x + 1 y - 1 z + 3 = = 3 4 7 D) 2 x - 1 y - 1 z + 3 = = 3 4 7 20) 21) Find the symmetric equations of the line through (3, 2, 1) and perpendicular to the plane x + 2y 2z = 2. x + 3 y + 2 z + 1 x - 3 y - 2 z - 1 = = B) = = A) 2 1 2 1 -2 -2 C) x - 3 y - 2 z - 1 = = 2 -1 -2 D) x + 3 y + 2 z + 1 = = 2 -1 -2 22) Find the equation of the plane containing the line x = 2t, y = 6 - t, z = 4 and the point A) 2x - y - 2z = 10 C) 2x + y + 2z = 10 16 22 , , 4 . 5 5 22) B) 2x + y - 2z = 10 D) 2x - y + 2z = 10 23) Find the equation of the plane through the point P(-2, 1, 3) and perpendicular to the line x = 10 + 8t, y = -5 + 8t, z = 2 - t. A) 8x + 8y - z = 11 B) 8x + 8y + z = -11 C) 8x + 8y - z = 19 D) 8x + 8y - z = -11 Find the following. 24) If v = -1, 6, 0 , find v . A) 37 21) 23) 24) B) 37 C) 2 37 D) 5 Find the distance between points P1 and P2 . 25) P1 (5, -8, -1) and P2 (10, 2, 9) A) 15 25) B) 14 C) 10 D) 18 Solve the problem. 26) Find the center and radius of the sphere with the equation 2x2 + 2y2 + 2z 2 - x + y - z - 9 = 0. 1 1 1 5 6 1 1 1 75 A) center = , - , ; radius = B) center = - , , - ; radius = 4 4 4 4 4 4 4 8 C) center = 1 1 1 5 6 , - , , radius = 2 4 4 4 D) center = 26) 1 1 1 5 3 , - , ,; radius = 4 4 4 4 27) Find the equation of the sphere with center = (0, -6, 1) and radius = 5. A) x2 + (y + 6)2 + (z - 1)2 = 25 B) x2 + (y + 6)2 + (z + 1)2 = 25 27) D) x2 - (y + 6)2 - (z - 1)2 = 25 C) x2 + (y - 6)2 + (z - 1)2 = 25 Identify the type of surface represented by the given equation. x2 y2 z 2 + = 28) 8 9 7 A) Hyperbolic paraboloid B) Paraboloid C) Elliptic cone D) Ellipsoid 3 28) 29) x2 z 2 y + = 8 7 7 29) A) Hyperbolic paraboloid C) Ellipsoid B) Elliptic cone D) Paraboloid Solve the problem. 30) The Cartesian coordinates of a point are ( -1, -1, -7). Find the cylindrical coordinates. 5π 5π 5π 5π , -7 B) 2, , -7 C) 2, , -7 D) 2, , -7 A) 2, 4 2 2 4 3 31) The cylindrical coordinates of a point are 5, π, 10 . Find the Cartesian coordinates. 2 A) (0, -5, 10) B) (0, 5, 10) C) 0, - 5 2 2, 10 A) (0, 10, 0) 31) D) (-5, 0, 10) 32) The Cartesian coordinates of a point are ( -1, -1, 0). Find the spherical coordinates. 5π π 5π π 5π π , B) 2, , C) 2, , D) A) 3, 4 2 8 4 4 2 33) The spherical coordinates of a point are 10, π, 32) 2, 5π , 0 4 π . Find the cylindrical coordinates. 2 B) (0, 0, -10) C) (10, π, 0) D) 33) 20 3 3, π, 0 34) The cylindrical coordinates of a point are (0, 0, 9). Find the spherical coordinates. π π π A) 9, , 0 B) (9, 0, 0) C) 9, 0, D) 9, 0, 4 2 2 Make the required change in the given equation. 35) z = x2 + y2 to cylindrical coordinates 35) D) r = cot φ csc φ 36) z = cot θ to Cartesian coordinates B) z = 36) x y C) z x = r y 37) r = 7 to spherical coordinates x r2 B) ρ2 (1 - cos φ) = 49 ρ 7 D) ρ = 7 sin φ 38) ρ = 2 cos θ sin φ to Cartesian coordinates A) x2 + y2 + z 2 = 2y C) D) z = 37) A) ρ = 7 csc φ C) cos φ = 34) B) z = r2 A) r tan θ = 1 C) z = r2 (cos θ + sin θ) A) x2 + y2 = z 30) 38) B) x2 + y2 + z 2 - 2z = 0 x2 + y2 + z 2 = 2x D) x2 + y2 + z 2 - 2x = 0 4 Write the equation for the plane. 39) The plane through the point P(2, 4, 2) and normal to n = 3i + 7j + 6k. A) -3x - 7y - 6z = 46 B) 2x + 4y + 2z = 46 C) 3x + 7y + 6z = 46 D) -2x - 4y - 2z = 46 40) The plane through the points P(5, -7, -18) , Q(-3, 8, 1) and R(-1, -5, 24). A) 8x + 3y + z = -1 B) 3x + y + 8z = 1 C) 8x + 3y + z = 1 39) 40) D) 3x + y + 8z = -1 Solve the problem. 41) Find an equation for the level curve of the function f(x, y) = 36 - x2 - y2 that passes through the point 3, 5 . A) x2 - y2 = 8 B) x2 + y2 = - 8 C) x2 + y2 = 8 D) x2 + y2 = 44 41) 42) Find an equation for the level surface of the function f(x, y, z) = x2 + y2 + z 2 that passes through the point 4, 12, 3 . A) x2 + y2 + z 2 = 13 B) x + y + z = ± 13 42) C) x2 + y2 + z 2 = 169 D) x + y + z = 13 43) Find an equation for the level surface of the function f(x, y, z) = ln point e12, e3 , e4 . 1 xy = A) ln 9 z B) xy = e11 z C) xy = e9 z xy that passes through the z D) ln Find all the first order partial derivatives for the following function. y8 44) f(x, y) = ln x2 A) 2 ∂f 8 ∂f = - ; = x ∂y y ∂x B) 2y8 8y7 ∂f ∂f = -ln ; = ln ∂x ∂y x3 x2 C) 8 ∂f 2 ∂f = ; = ∂x y ∂y x D) 2 8 ∂f ∂f = -ln ; = ln x ∂y y ∂x 45) f(x, y) = e-x x2 + y2 A) 2xe-x 2ye-x ∂f ∂f = - ; = - 2 ∂x ∂y (x2 + y2 ) (x2 + y2 )2 B) e-x(x2 + y2 + 2x) ∂f 2ye-x ∂f = ; = ∂x ∂y (x2 + y2 )2 (x2 + y2 )2 C) e-x(x2 + y2 + x) ∂f ye-x ∂f = - ; = - 2 ∂x ∂y (x2 + y2 ) (x2 + y2 )2 D) e-x(x2 + y2 + 2x) ∂f 2ye-x ∂f = - ; = - 2 ∂x ∂y (x2 + y2 ) (x2 + y2 )2 43) xy = 9 z 44) 45) 5 Find all the second order partial derivatives of the given function. 46) f(x, y) = x2 + y - ex+y 46) A) ∂2 f ∂2 f ∂2 f ∂2 f = 1 - ex+y; = - ex+y; = = -ex+y 2 2 ∂y∂x ∂x∂y ∂x ∂y B) ∂2 f ∂2 f ∂2 f ∂2 f = 2 - ex+y; = - ex+y; = = -ex+y ∂y∂x ∂x∂y ∂x2 ∂y2 C) ∂2 f ∂2 f ∂2 f ∂2 f = 2 - y2 ex+y; = -x2 ex+y; = = - y2 ex+y ∂y∂x ∂x∂y ∂x2 ∂y2 D) ∂2 f ∂2 f ∂2 f ∂2 f = 2 + ex+y; = ex+y; = = ex+y ∂y∂x ∂x∂y ∂x2 ∂y2 47) f(x, y) = ln (x2 y - x) 2xy - 2x2 y2 - 1 ∂2 f x4 x2 ∂2 f ∂2 f ∂2 f A) = ; = ; = = ∂x2 ∂y2 (x2 y - x)2 ∂y∂x ∂x∂y (x2 y - x)2 (x2 y - x)2 B) 2xy - 2x2 y2 - 1 ∂2 f x2 x2 ∂2 f ∂2 f ∂2 f = ; = - ; = = - 2 2 ∂y∂x ∂x∂y ∂x2 ∂y2 (x2 y - x) (x2 y - x) (x2 y - x)2 C) xy - x2 y2 - 1 ∂2 f x4 x2 ∂2 f ∂2 f ∂2 f = ; = - ; = = - ∂x2 ∂y2 (x2 y - x)2 (x2 y - x)2 ∂y∂x ∂x∂y (x2 y - x)2 D) 2xy - 2x2 y2 - 1 ∂2 f x4 x2 ∂2 f ∂2 f ∂2 f = ; = - ; = = - 2 2 2 2 ∂y∂x ∂x∂y ∂x ∂y (x2 y - x) (x2 y - x) (x2 y - x)2 47) Solve the problem. 48) Evaluate A) - 2 dw 3 xy at t = π for the function w(x, y, z) = ; x = sin t, y = cost, z = t2 . dt 2 z 1 π2 B) - 2 1 π C) - 4 1 9 π2 48) D) 2 1 π2 Use implicit differentiation to find the specified derivative at the given point. dy 49) Find at the point (1, 1) for 3x2 + 3y3 + 4xy = 0. dx A) - 50) Find A) 10 7 B) 10 13 C) - 1 49) D) - 10 13 yz ∂z at the point (8, 1, -1) for ln - exy+z 2 = 0. x ∂y 2e9 - 1 1 - 8e9 B) 1 - 8e9 1 - 2e9 50) C) 8e9 - 1 1 - 2e9 Find the derivative of the function at the given point in the direction of A. 51) f(x, y, z) = 9x - 2y - 4z, (4, -9, -6), A = 3i - 6j - 2k 53 47 41 B) C) A) 7 7 7 6 D) 1 - 2e9 1 - 8e9 51) 39 D) 7 Compute the gradient of the function at the given point. 52) f(x, y) = ln(-6x - 8y), (-9, -4) 9 2 3 4 A) - i - j B) - i - j 86 43 43 43 52) 2 9 C) - i - j 43 86 1 1 D) i + j 86 86 Provide an appropriate response. 53) Find the direction in which the function is increasing most rapidly at the point P0 . 53) f(x, y, z) = xy - ln(z), P0 (1, 2, 2) A) 21 (4i + 2j - k) 21 B) 1 (4i + 2j - k) 21 C) 1 (4i - 2j + k) 21 D) 1 (4i + 2j - k) 21 Solve the problem. 54) Write an equation for the tangent line to the curve x2 - 4xy + y2 = 6 at the point (-1, 1). A) y = x - 2 B) y = x + 1 C) x + y = 1 D) x - y + 2 = 0 54) 55) Find parametric equations for the normal line to the surface -4x - 6y + 5z = 12 at the point (1, -1, 2). A) x = -4t + 1, y = -6t - 1, z = 5t + 2 B) x = -4t - 1, y = -6t + 1, z = 5t - 2 D) x = t - 4, y = -t - 6, z = 2t + 5 C) x = -t - 4, y = t - 6, z = -2t + 5 55) 56) Write parametric equations for the tangent line to the curve of intersection of the surfaces z = 5x2 + 4y2 and z = x + y + 7 at the point (1, 1, 9). 56) B) x = -9t + 1, y = 11t + 1, z = 2t + 9 D) x = -9t + 1, y = 9t + 1, z = 2t + 9 A) x = -7t + 1, y = 11t + 1, z = 2t + 9 C) x = -7t + 1, y = 9t + 1, z = 2t + 9 57) If the length, width, and height of a rectangular solid are measured to be 6, 3, and 5 inches respectively and each measurement is accurate to within 0.1 inch, estimate the maximum percentage error in computing the volume of the solid. A) 5.60% B) 7.00% C) 8.40% D) 6.30% 57) Find all local extreme values of the given function and identify each as a local maximum, local minimum, or saddle point. 58) 58) f(x, y) = x2 - 18x + y2 + 12y - 6 B) f(-9, 6) = 345, local maximum D) f(9, 6) = 21, saddle point A) f(9, -6) = -123, local minimum C) f(-9, -6) = 201, saddle point Find the extreme values of the function subject to the given constraint. 59) f(x, y) = x2 + 4y3 , x2 + 2y2 = 2 59) A) Maximum: 4 at (0, 1); minimum: -4 at (0, -1) B) Maximum: 8 at (2, 1); minimum: -4 at (0, -1) C) Maximum: 8 at (2, 1); minimum: -31 at (1, -2) D) Maximum: 4 at (0, 1); minimum: -31 at (1, -2) Solve the problem. 60) A rectangular box with square base and no top is to have a volume of 32 ft 3 . What is the least amount of material required? A) 48 ft 2 B) 40 ft 2 C) 36 ft 2 D) 42 ft 2 7 60) 61) What is the largest possible volume of an open metal box made from 75 ft 2 of tin? Ignore the thickness of the tin. A) 31.2 ft 3 B) 62.5 ft 3 C) 12.5 ft 3 D) 125.0 ft 3 Find the indicated limit or state that it does not exist. x2 62) lim cos 2 x + y2 (x, y) → (0, 0) A) π 2 61) 62) B) 0 C) 1 D) No limit Solve the problem. 63) Find the mass of a thin triangular plate bounded by the coordinate axes and the line x + y = 10 if δ(x, y) = x + y. 2000 4000 1000 500 B) C) D) A) 3 3 3 3 Find the area of the region specified by the integral(s). 4 4 - x 64) dy dx 0 0 8 A) B) 8 3 ∫ ∫ 63) 64) C) 16 3 D) 4 Solve the problem. 65) Integrate f(x, y) = A) π(ln 4)2 ln(x2 + y2 ) over the region 1 ≤ x2 + y2 ≤ 16. x2 + y2 C) 2π(ln 4)2 B) 2π ln 4 65) D) π ln 4 66) Find the mass of the rectangular solid of density δ(x, y, z) = xyz defined by 0 ≤ x ≤ 7, 0 ≤ y ≤ 5, 0 ≤ z ≤ 2. 1225 2450 980 1225 B) C) D) A) 2 3 3 3 66) Find the volume of the indicated region. 67) the region bounded by the paraboloid z = 81 - x2 - y2 and the xy-plane 729 A) 243π B) π C) 2187π 2 67) 6561 D) π 2 Change the Cartesian integral to an equivalent polar integral, and then evaluate. 5 25 - x2 68) dy dx -5 0 ∫ ∫ A) 25π 2 B) 125π 2 C) 8 π 2 68) D) 5π 2 Evaluate the cylindrical coordinate integral. 6 9 7r 69) z dz r dr dθ 2 2 0 320,705 A) B) 641,410 2 ∫ ∫ ∫ 69) C) 320,705 3 D) 1,603,525 4 Solve the problem. 70) Find the center of mass of the thin semicircular region of constant density δ = 7 bounded by the x-axis and the curve y = 25 - x2 . A) x = 0, y = 20 3π B) x = 0, y = 40 3π C) x = 0, y = 10 3π D) x = 0, y = 5 3π 71) Let D be the region bounded below by the cone z = x2 + y2 and above by the sphere z = 25 - x2 - y2 . Set up the triple integral in cylindrical coordinates that gives the volume of using the order of integration dz dr dθ. π/2 5 25 - r2 r dz dr dθ A) 0 0 0 ∫ C) ∫ ∫ ∫ π/2 0 ∫ 5/ 2 0 ∫ 25 - r2 B) ∫ 2π ∫ 2π 0 D) r dz dr dθ ∫ ∫ 0 0 0 5 ∫ 0 25 - r2 71) r dz dr dθ 0 5/ 2 ∫ 25 - r2 r dz dr dθ 0 Find the volume of the indicated region. 72) the region bounded below by the xy-plane, laterally by the cylinder r = 8 cos θ, and above by the plane z = 7 A) 112π B) 14π C) 98π D) 784π Find the Jacobian 70) 72) ∂(x, y) ∂(x, y, z) or (as appropriate) using the given equations. ∂(u, v) ∂(u, v, w) 73) x = 7u cos 3v, y = 7u sin 3v A) 147v B) 63v 73) C) 147u D) 63u Use the given transformation to evaluate the integral. 74) u = x + y, v = -2x + y; 74) ∫ ∫ 4x dx dy, R where R is the parallelogram bounded by the lines y = -x + 1, y = -x + 4, y = 2x + 2, y = 2x + 5 A) -4 B) 4 C) 8 D) -8 Evaluate the line integral of f(x,y) along the curve C. 75) f(x, y) = x2 + y2 , C: y = 2x + 2, 0 ≤ x ≤ 3 A) 93 5 75) B) 93 C) 31 5 9 D) 183 5 Find the work done by F over the curve in the direction of increasing t. 76) F = -5yi + 5xj + 8z 3 k; C: r(t) = cos ti + sin tj, 0 ≤ t ≤ 9 A) W = 90 B) W = 405 2 C) W = 45 76) D) W = 0 Test the vector field F to determine if it is conservative. 77) F = 4x3 y4 z 4 i + 4x4 y3 z 4 j + 4x4 y4 z 3 k 77) A) Conservative B) Not conservative Find the potential function f for the field F. x 1 78) F = i - 5j - k z z2 78) x B) f(x, y, z) = + C z x A) f(x, y, z) = - 5 + C z C) f(x, y, z) = x D) f(x, y, z) = - 5y + C z 2x - 5y + C z Find the divergence of the field F. 79) F = -6x6 i + 5xyj + 5xzk 79) A) -36x5 + 10x - 26 C) -36x5 + 5y + 5z B) -36x5 + 10x D) -26 Evaluate the work done between point 1 and point 2 for the conservative field F. 80) F = (y + z)i + xj + xk; P1 (0, 0, 0), P2 (9, 10, 8) A) W = 0 B) W = 90 C) W = 162 Find the mass of the wire that lies along the curve r and has density δ. 81) r(t) = 6i + (5 - 3t)j + 4tk, 0 ≤ t ≤ 2π ; δ = 5(1 + sin 9t) 100 50 + 50π units B) + 50π units C) 50π units A) 9 9 Evaluate. The differential is exact. (4, 4, 2) 82) (2xy2 - 2xz 2 ) dx + 2x2 y dy - 2x2 z dz (0, 0, 0) A) 0 B) 320 80) D) W = 18 81) D) 10π units ∫ 82) C) 192 D) 384 Apply Greenʹs Theorem to evaluate the integral. 83) C (y2 + 6) dx + (x2 + 1) dy 83) C: The triangle bounded by x = 0, x + y = 1, y = 0 2 B) -3 A) 3 C) 0 10 D) 4 84) C (6y dx + 5y dy) 84) C: The boundary of 0 ≤ x ≤ π, 0 ≤ y ≤ sin x A) -1 B) 2 C) 0 Find the potential function f for the field F. 85) F = (y - z)i + (x + 2y - z)j - (x + y)k A) f(x, y, z) = x + y2 - xz - yz + C D) -2 85) B) f(x, y, z) = xy + y2 - x - y + C D) f(x, y, z) = x(y + y2 ) - xz - yz + C C) f(x, y, z) = xy + y2 - xz - yz + C 11 Answer Key Testname: CAL3‐FINAL‐REVIEW 1) D 2) A 3) A 4) A 5) A 6) B 7) C 8) C 9) C 10) C 11) C 12) B 13) C 14) D 15) C 16) D 17) A 18) C 19) D 20) B 21) A 22) D 23) D 24) B 25) A 26) D 27) A 28) C 29) D 30) D 31) A 32) C 33) C 34) B 35) B 36) B 37) A 38) D 39) C 40) C 41) C 42) C 43) B 44) A 45) D 46) B 47) D 48) C 49) D 50) B 12 Answer Key Testname: CAL3‐FINAL‐REVIEW 51) C 52) B 53) B 54) D 55) A 56) C 57) B 58) A 59) A 60) A 61) B 62) D 63) D 64) B 65) C 66) B 67) D 68) A 69) A 70) A 71) D 72) A 73) C 74) A 75) A 76) C 77) A 78) D 79) B 80) C 81) C 82) C 83) C 84) D 85) C 13
© Copyright 2026 Paperzz