Infection, Genetics and Evolution 11 (2011) 44–51 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Identification and lineage genotyping of South American trypanosomes using fluorescent fragment length barcoding P.B. Hamilton a,*, M.D. Lewis b, C. Cruickshank a, M.W. Gaunt b, M. Yeo b, M.S. Llewellyn b, S.A. Valente c, F. Maia da Silva d, J.R. Stevens a, M.A. Miles b, M.M.G. Teixeira d a Biosciences, College of Life and Environmental Sciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, United Kingdom Department of Pathogen Molecular Biology Unit, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom Instituto Evandro Chagas, Belém, PA 67030-070, Brazil d Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil b c A R T I C L E I N F O A B S T R A C T Article history: Received 20 August 2010 Received in revised form 14 October 2010 Accepted 15 October 2010 Available online 26 October 2010 Trypanosoma cruzi and Trypanosoma rangeli are human-infective blood parasites, largely restricted to Central and South America. They also infect a wide range of wild and domestic mammals and are transmitted by a numerous species of triatomine bugs. There are significant overlaps in the host and geographical ranges of both species. The two species consist of a number of distinct phylogenetic lineages. A range of PCR-based techniques have been developed to differentiate between these species and to assign their isolates into lineages. However, the existence of at least six and five lineages within T. cruzi and T. rangeli, respectively, makes identification of the full range of isolates difficult and time consuming. Here we have applied fluorescent fragment length barcoding (FFLB) to the problem of identifying and genotyping T. cruzi, T. rangeli and other South American trypanosomes. This technique discriminates species on the basis of length polymorphism of regions of the rDNA locus. FFLB was able to differentiate many trypanosome species known from South American mammals: T. cruzi cruzi, T. cruzi marinkellei, T. dionisii-like, T. evansi, T. lewisi, T. rangeli, T. theileri and T. vivax. Furthermore, all five T. rangeli lineages and many T. cruzi lineages could be identified, except the hybrid lineages TcV and TcVI that could not be distinguished from lineages III and II respectively. This method also allowed identification of mixed infections of T. cruzi and T. rangeli lineages in naturally infected triatomine bugs. The ability of FFLB to genotype multiple lineages of T. cruzi and T. rangeli together with other trypanosome species, using the same primer sets is an advantage over other currently available techniques. Overall, these results demonstrate that FFLB is a useful method for species diagnosis, genotyping and understanding the epidemiology of American trypanosomes. ß 2010 Elsevier B.V. All rights reserved. Keywords: Co-infection Genetic diversity Vector Chagas disease Protozoa Kinetoplastid 1. Introduction Trypanosoma cruzi and Trypanosoma rangeli are the two species of human-infective trypanosomes occurring in overlapping areas of South and Central America. T. cruzi causes Chagas disease, a condition that affects at least 8 million people, with 100 million at risk and 14,000 deaths annually (Jannin and Salvatella, 2006). Despite recent advances in disrupting vector transmission in Southern Cone countries, this disease remains a major public health problem in Latin America (Schofield et al., 2006; Miles et al., 2009). In regions endemic for Chagas disease, T. cruzi circulates between humans and domestic animals and is transmitted by domiciliated triatomine bugs. However, infection by T. cruzi is a * Corresponding author. Tel.: +44 01392 263917; fax: +44 01392 263700. E-mail address: [email protected] (P.B. Hamilton). 1567-1348/$ – see front matter ß 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.meegid.2010.10.012 widespread zoonosis, ranging from the southern half of the USA to the southernmost countries of South America (Marcili et al., 2009c). T. rangeli is not believed to cause disease in humans. A high prevalence of T. rangeli in humans has been reported in Central America and northwestern South America, where concomitant infections and serological cross-reactivity with T. cruzi make diagnosis of Chagas disease difficult (Vallejo et al., 2009). Both T. cruzi and T. rangeli have a wide mammalian host range and are transmitted by a large diversity of triatomine bugs, although only species of the genus Rhodnius transmits T. rangeli (Maia da Silva et al., 2007; Vallejo et al., 2009). Molecular studies have revealed high genetic diversity in T. cruzi and T. rangeli, with isolates of both species distributed into several lineages, also called discrete taxonomic units (DTU) within T. cruzi (Stevens et al., 1999; Maia da Silva et al., 2007; Miles et al., 2009; Vallejo et al., 2009). At least six lineages of T. cruzi cruzi have been described using molecular markers including RAPDs, SSU P.B. Hamilton et al. / Infection, Genetics and Evolution 11 (2011) 44–51 rRNA gene sequences, microsatellites and mitochondrial genes (e.g. Brisse et al., 2001; Machado and Ayala, 2001; Freitas et al., 2005; Westenberger et al., 2005; Miles et al., 2009). These lineages differ in their host range, ecotope and geographical distribution (Miles et al., 2009) and are potentially associated with variable forms of Chagas disease (Anez et al., 2004). T. cruzi lineages until recently designed as TcI and TcIIa–e (Brisse et al., 2001; Miles et al., 2009) were recently redesigned as follows: TcI, TcII (former TcIIb), TcIII (TcIIc), TcIV (TcIIa), TcV (TcIId) and TcVI (TcIIe) (Zingales et al., 2009). Accurate identification of T. cruzi and T. rangeli, and their respective lineages is important for diagnosis and understanding their epidemiology. In addition, other species of mammalian trypanosome can be found in the vertebrate hosts of these species, and there are potentially species that are yet to be discovered (Stevens et al., 1999; Maia da Silva et al., 2008; Marcili et al., 2009a,c; Cavazzana et al., 2010). Distinguishing between T. cruzi and T. rangeli lineages is still problematic, especially in regions where man, wild reservoirs and triatomines can be found infected with different combinations of isolates from different lineages of both T. cruzi and T. rangeli (Yeo et al., 2005, 2007; Vallejo et al., 2009). Morphology is insufficient for species identification, particularly in mixed infections in vectors. In mixed cultures T. cruzi prevails over T. rangeli and, after successive passages, typically only one lineage of T. cruzi is selected (Yeo et al., 2007; Maia da Silva et al., 2008). PCR assays have increased sensitivity and accuracy of diagnosis of T. cruzi, allowing identification directly from tissue samples, and triatomine guts and faeces (Hamano et al., 2001; Virreira et al., 2003). Several PCR-based methods are able to differentiate T. cruzi from T. rangeli, including PCR with species-specific primers developed from several genomic regions: kDNA minicircles (Avila et al., 1991); telomeric repeats (Chiurillo et al., 2003); repetitive DNA (Vargas et al., 2000); randomly amplified polymorphic DNA (RAPD)-derived markers (Maia da Silva et al., 2004a), spliced leader gene (Maia da Silva et al., 2007) and Cathepsin L-like gene (Ortiz et al., 2009). Length differences in a region of the 24S rRNA gene permitted the identification of the three common trypanosomatid species in triatomines: T. cruzi, T. rangeli and Blastocrithidia triatoma (Schijman et al., 2006). The most widely used methods for differentiating between T. cruzi lineages are based on polymorphism of 24S alpha rDNA and spliced leader DNA, although these methods are unable to distinguish all lineages (Souto et al., 1996; Fernandes et al., 2001). Indeed, some studies have shown that use of a single molecular marker can lead to misclassification of T. cruzi isolates (Brisse et al., 2001; Burgos et al., 2007; Marcili et al., 2009a,b,c). The five lineages of T. rangeli can be distinguished through length and sequence polymorphisms of the internal transcribed spacer (ITS) rDNA regions, cathepsin L-like and spliced leader (SL) genes (Maia da Silva et al., 2004b, 2007, 2009; Ortiz et al., 2009). Fluorescent fragment length barcoding (FFLB) is a method that discriminates species by size polymorphisms in specific regions of the 18S and 28S ribosomal RNA genes (Hamilton et al., 2008). It has been applied to the identification of African trypanosomes, both in tsetse flies and in vertebrates, and its use has led to the discovery of new strains and species (Adams et al., 2008, 2009, 2010; Adams and Hamilton, 2008; Hamilton et al., 2009). It has proved to be quick, accurate, and able to detect mixed infections of up to three different strains (Hamilton et al., 2008; Adams et al., 2009). The high diversity and complexity of T. cruzi and T. rangeli suggest that many genotypes remain to be described, especially from the generally poorly investigated sylvatic vertebrate and invertebrate hosts of unexplored geographical regions and ecotopes. Here we apply this technique to the issue of species and lineage identification of the American trypanosomes, T. cruzi and T. rangeli. 45 Our results provide evidence that FFLB is a useful tool for elucidating the genetic diversity present within these species and for better understanding of the epidemiology of American trypanosomes. 2. Materials and methods 2.1. T. cruzi and T. rangeli isolates The isolates of T. cruzi and T. rangeli were selected for this study to represent the broad genetic diversity found in a range of vertebrate and vector species from their full geographical range (Table 2). They represented the six recognised lineages of T. cruzi cruzi, one new genotype of this species associated with bats (TCbat) and T. c. marinkellei, the subspecies most closely related to T. cruzi cruzi (Stevens et al., 1999) and thought to be restricted to bats from Central and South America (Marcili et al., 2009a; Cavazzana et al., 2010). Isolates of the five currently recognised lineages of T. rangeli (Maia da Silva et al., 2004b, 2007, 2009; Ortiz et al., 2009) were also selected for this study. Identity of species/isolates was as confirmed in previous studies (Maia da Silva et al., 2008; Marcili et al., 2009a,b,c). 2.2. Fluorescent fragment length barcoding FFLB analysis was carried out using primers and the PCR programme described previously (Hamilton et al., 2008), except REDTaq1 DNA Polymerase (Sigma) was used. All DNA samples were isolated from cultured trypanosomes. A total of four primer sets were used (two sets within the 18S rRNA gene and two within the 28S a rRNA gene) to create a barcode for each sample, consisting of the lengths of the four amplified regions. These were then compared to barcodes from other trypanosomes obtained in previous studies (Hamilton et al., 2008, 2009; Adams et al., 2009). 3. Results and discussion 3.1. Identification of American trypanosomes using fluorescent fragment length barcoding In this study, we evaluated the use of fluorescent fragment length barcoding (FFLB) for identification and diagnosis of species of American trypanosomes and genotyping of lineages of T. cruzi and T. rangeli. We compared isolates from all recognised major lineages of T. cruzi and T. rangeli. All isolates examined gave peaks with the four primer sets. Figs. 1 and 2 show example FFLB profiles from a range of species. The method was able to differentiate T. cruzi from T. rangeli independent of lineages of these two species, as the size ranges of 18S1, 18S3 and 28S1 did not overlap between the two species (Tables 1 and 2). The FFLB patterns of T. cruzi and T. rangeli also differed from those of several other species that are known from South American mammals: T. evansi, T. dionisii-like, T. lewisi, T. theileri and T. vivax (Table 1). Additionally, all T. rangeli lineages and the several of T. cruzi lineages could be distinguished, demonstrating that FFLB could be useful for epidemiological studies. Indeed, two loci 18S1 and 28S, used together, were sufficient to discriminate all lineages except the two T. cruzi hybrid lineages, while the other loci often provided additional confidence in the results. 3.2. Identification of T. cruzi lineages Sixty-four T. cruzi cruzi isolates belonging to the six established T. cruzi lineages (TcI–TcVI), together with two genotypes that are apparently restricted to bats: TCbat and T. c. marinkellei, were characterised using the FFLB method (Tables 1 and 2 and Fig. 1). [()TD$FIG] 46 P.B. Hamilton et al. / Infection, Genetics and Evolution 11 (2011) 44–51 Table 1 Fluorescent fragment length barcoding profiles of American trypanosomes. Fragment lengths (bp) 18S1 18S3 28S1 242–246 334–349 T. cruzi TcI (formerly I) 294–309a T. cruzi TcII (formerly IIb) 302–303 240–241 348–351 T. cruzi TcIII (formerly IIc) 300–301 237 332–336 T. cruzi TcIV (formerly IIa) 286–288 239–240 321–325 T. cruzi TcV (formerly IId) 300 236–237 334 T. cruzi TcVI (formerly IIe) 302–303 240–241 350 T. cruzi TcBAT 317 239 335 All T. cruzi cruzi 286–317 236–246 321–351 T. cruzi marinkellei 280 236 311 T. rangeli TrA 267–269 223 297–298 T. rangeli TrB 261 224 298 T. rangeli TrC 266 223 302 T. rangeli TrD 268 223 305 T. rangeli TrE 267 223 300 All T. rangeli 261–269 223–224 297–305 Other trypanosomes/trypanosomatids found in South America T. dionisii-like 259–261 227 304–310 T. theileric 233–234 216 250–251 209 234 291–292 T. evansid T. lewisi 239 216 266 e T. vivax 189 199 –f Unidentified 234 212 257 trypanosomatid 344 222 Blastocrithidia triatomag 28S2 197–199 213–215 188–189 204–207 189–190 214 189 188–215 196 193–194 188 191 191, 193b 186 186–194 203–208 183 199 195 172 194 a 294–309 either indicates multiple peaks within this range for individual isolates or, different isolates of the strain give different sized peaks within the range. b 191, 193 indicates two peaks for one isolate. c From Hamilton et al. (2009). d From Hamilton et al. (2008). e From Adams et al. (2009). f Dash indicates that no peak was detected consistently for multiple isolates. g predicted from DNA sequence AF153037; no sequences for the 28S rDNA are currently available for this species. Fig. 1. Example electropherograms from T. cruzi. x axis, size of fragment in base pairs; y axis, fluorescence intensity. Small peaks without numbers are size standard. Tcm = T. cruzi marinkellei. TcI was clearly distinguished from all other lineages using one locus, 28S2. However, there was significant heterogeneity within this lineage. All four loci varied in size, with the largest size range (15 bp) at 18S1. Most TcI isolates, including three that were cloned (Xe5740, SJM39, M7) gave up to three peaks at two loci, 18S1 and 28S1 (Fig. 1). This could result from the presence of multiple divergent ribosomal copies within the genome of some TcI isolates, although the multiple peaks may result from PCR artifacts. Recent studies have shown high variability and distinct genotypes within TcI on the basis of the polymorphism of the intergenic region of spliced leader gene (Cura et al., in press) and DNA microsatellites (Llewellyn et al., 2009b). However, while in this study isolates originated from throughout the range of TcI, no obvious geographical pattern of FFLB profiles was apparent. TcI is the most common lineage in sylvatic cycles from North (southern USA), Central and South America, transmitted mainly by Rhodnius species. This lineage predominates as an agent of human infection from the Amazon basin northwards, where it is the main cause of Chagas disease in endemic areas of Venezuela, Colombia, Panama and Mexico (Miles et al., 1981; Bosseno et al., 2006; Burgos et al., 2007; Samudio et al., 2007; Anez et al., 2009; Mejia-Jaramillo et al., 2009). In Brazil, this lineage is reported to infect humans in rural endemic areas (Teixeira et al., 2006) and in the Amazonia region (Miles et al., 1981; Marcili et al., 2009c; Valente et al., 2009). TcII (formerly IIb) is common in domestic transmission cycles in Southern Cone countries of South America and is mainly transmitted by T. infestans. TcII could not be clearly distinguished from TcVI using FFLB, although at the loci 28S1 and 28S2 some fragment sizes were found only in TcII. TcIII (IIc) has a widespread distribution, occurring from Venezuela and Brazilian Amazonia to southern Brazil, Argentina, and Paraguay, transmitted by Triatoma and Panstrongylus species mainly in sylvatic and peridomestic cycles (Yeo et al., 2005; Freitas et al., 2006; Llewellyn et al., 2009a; Marcili et al., 2009b; Miles et al., 2009). TcIII showed heterogeneous profiles, and could not be distinguished from TcV, although some 28S2 fragment sizes were restricted to TcIII. The 28S1 loci of three Brazilian isolates, JA2cl2, M6241cl6 and TCC1437 were longer (336 bp, compared to 332– 334 bp) than the other isolates typed, although the significance of this is not known (Table 2). TcIV (IIa) is common in wild monkeys and Rhodnius in the Brazilian Amazonia, where it has been sporadically reported from human cases of oral infection (Miles et al., 1981; Maia da Silva et al., 2008; Marcili et al., 2009c). This lineage showed heterogeneous profiles: the North American isolate (92122102r) gave a distinct profile from the eight South American isolates of TcIV at two loci: 18S1 (288, compared to 286 for South American isolates) and 28S2 (207, compared to 204), corroborating that they are closely related, yet distinct (Barnabe et al., 2001; Marcili et al., 2009a; Bosseno et al., 2009). The hybrid lineages TcV (IId) and TcVI (IIe) occur in Bolivia, Paraguay, Chile, Argentina and southern Brazil, and predominate in humans, domestic and synanthropic (animals that live in close association with humans) mammals and triatomines (Brisse et al., P.B. Hamilton et al. / Infection, Genetics and Evolution 11 (2011) 44–51 47 Table 2 Origins of trypanosomes used in the study and their FFLB profiles. Species/ subspecies Type/ lineage Strain/ isolate Location Host/vector T. T. T. T. T. T. T. cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi TcI TcI TcI TcI TcI TcI TcI (I) (I) (I) (I) (I) (I) (I) Bajo Calima, Colombia Cojedes, Venezuela Dtto Federal, Venezuela Georgia, USA Para, Brazil Cotopachi, Bolivia Florida, USA Kinkajou Potus flavus Human Homo sapiens Human Homo sapiens Opossum Didelphis marsupialis Opossum Philander opossum Grass mouse Akodon boliviensis Triatomine Triatoma sanguisuga 308 303 305 309 299 308 309 T. T. T. T. T. T. T. T. T. T. T. T. T. T. cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi TcI TcI TcI TcI TcI TcI TcI TcI TcI TcI TcI TcI TcI TcI (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I) 458 11006 11124 93070103P b2026 COTMA22 FLORID AC1D12 JR cl4 M16 M7b PALDA21 SJM34b SJM39b SJM41b TEV55 TCC1358c TCC1360 TCC1367 TCC1380 TCC1397 14844TCC1591 TCC1010 15818TCC1612 15907TCC1613 TCC651 TCC758 Anzoátegui, Venezuela Barinas, Venezuela Barinas, Venezuela Chaco, Argentina Beni, Bolivia Beni, Bolivia Beni, Bolivia Chaco, Argentina Amazonas, Brazil Para, Brazil Para, Brazil Para, Brazil Para, Brazil Para, Brazil Human Homo sapiens Opossum Didelphis marsupialis Opossum Didelphis marsupialis Opossum Didelphis albiventris Opossum Didelphis marsupialis Opossum Didelphis marsupialis Opossum Philander opossum Triatomine Triatoma infestans Triatomine Rhodnius brethesi Triatomine Rhodnius pictipes Triatomine Rhodnius robustus Triatomine Rhodnius robustus Triatomine Rhodnius pictipes Human Homo sapiens Rondonia, Brazil Para, Brazil T. cruzi cruzi T. cruzi cruzi TcI (I) TcI (I) T. cruzi cruzi TcI (I) T. cruzi cruzi T. cruzi cruzid TcI (I) TcI (I) T. cruzi cruzi TcI (I) T. cruzi cruzie FFLB profile 18S1 18S3 28S1 28S2 244 245 245 245 244 244 245 343 342 342 339 341 345 339 197 199 199 198 198 197 198 306 (302, 308) 306 306 307 307 308 (302, 304) 305 302 294, 298 294, 298, 301 294 (298) 295 (301) 294, 298 295, 297 242, 243 242 (244) 244 244 244 244 244 244 244 244 244 244 243 244 198 199 199 198 197 197 198 198 198 198 198 198 198 198 Opossum Didelphis marsupialis Human Homo sapiens 302, 309 297, 294 244 243 336, 344 334, 339 339 (334) 349 343 343 (345) 345 345 (335) 340 335 334 334 335, 340 335, 337, 342 342, 345 335 Para, Brazil Human Homo sapiens 294, 298 243 339 198 Rondonia, Brazil Amazonas, Brazil Triatomine Rhodnius robustus Triatomine Rhodnius brethesi 244 239, 244 342 321, 335, 341 342 198 198, 204 194, 198 198 198 (306)a (309) (301) (305) 198 198 Louisiana, USA Opossum Didelphis marsupialis TcI (I) USAO POSSUM Xe1313 307 286, 302, 304, 309 303 (309) Para, Brazil Opossum Philander opossum 234, 302 245246 212, 244 T. cruzi cruzi T. cruzi cruzi TcI (I) TcI (I) Xe5167 Xe5740b Para, Brazil Para, Brazil Opossum Didelphis marsupialis Opossum Didelphis marsupialis 294 (299) 294 (301) 244 244 257, 335 344 335 T. cruzi cruzi TcII (IIb) 302 240 349 215 TcII (IIb) TcII (IIb) TcII (IIb) Presidente Hayes, Paraguay Bahia, Brazil Cuncumen, Chile San Martin, Boqueron, Paraguay Triatomine Triatoma infestans T. cruzi cruzi T. cruzi cruzi T. cruzi cruzi Chaco23 cl4 Esm cl3 IVV cl4 Pot7a cl1 Human Homo sapiens Human Homo sapiens Triatomine Triatoma infestans 302 302 303 241 240 240 348 351 349 213 214 214 T. T. T. T. T. TcIII TcIII TcIII TcIII TcIII JA2 cl2 M6241 cl6 SABP19 cl1 SJMO18 SMA8 Opossum Monodelphis sp. Human Homo sapiens Triatomine Triatoma infestans Armadillo Dasypus novemcinctus Armadillo Dasypus novemcinctus 301 301 301 300 300 237 237 237 237 237 336 336 334 333 333 189 189 189 189 189 Armadillo Dasypus novemcinctus 300 237 333 189 Rodent Proechimys iheringi 300 237 332333 336 333 188-189 cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi (IIc) (IIc) (IIc) (IIc) (IIc) T. cruzi cruzi TcIII (IIc) SMA9 T. cruzi cruzi TcIII (IIc) TCC135 Amazonas, Brazil Para, Brazil Vitor, Peru Beni, Bolivia Santa Maria de Apere, Bolivia Santa Maria de Apere, Bolivia Sao Paulo, Brazil T. cruzi cruzi T. cruzi cruzi TcIII (IIc) TcIII (IIc) TCC1437 TCC712 Para, Brazil Amazonas, Brazil Rodent Proechimys longicaudatus Marsupial Monodelphis brevicaudata 301 301 237 237 T. cruzi cruzi T. cruzi cruzi T. cruzi cruzi TcIV (IIa) TcIV (IIa) TcIV (IIa) Georgia, USA Venezuela Amapa, Brazil Raccoon Procyon lotor Squirrel monkey Saimiri sciureus Human Homo sapiens 288 286 286 239 239 239 T. cruzi cruzi TcIV (IIa) Para, Brazil Human Homo sapiens 286 T. T. T. T. T. cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi TcIV TcIV TcIV TcIV TcIV (IIa) (IIa) (IIa) (IIa) (IIa) 92122102r Saimiri3 cl1 4766TCC1434 3475TCC1441 TCC338 TCC668 TCC759 TCC760 X10610 cl5 Acre, Brazil Rondonia, Brazil Amazonas, Brazil Amazonas, Brazil Guárico, Venezuela Monkey Saguinus labiatus Triatomine Rhodnius robustus Triatomine Rhodnius brethesi Triatomine Rhodnius brethesi Human Homo sapiens T. T. T. T. T. cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi cruzi TcV TcV TcV TcV TcV (IId) (IId) (IId) (IId) (IId) 92-80 cl2 Para6 cl4 Bertha TCC656 NR cl3 Santa Cruz, Bolivia Paraguari, Paraguay Santa Cruz, Bolivia Santa Cruz, Bolivia Chile Human Homo sapiens Triatomine Triatoma infestans Human Homo sapiens Human Homo sapiens Human Homo sapiens 199 189 189 207 204 204 239 322 321 323, 325 322 286 286 286 286 286 239 239 239 239 240 321 321 321 321 321 204 204 204 204 204 300 300 300 300 300 237 237 236 237 237 334 334 334 334 334 189 189 190 189 189 204 P.B. Hamilton et al. / Infection, Genetics and Evolution 11 (2011) 44–51 48 Table 2 (Continued ) Species/ subspecies Type/ lineage Strain/ isolate Location Host/vector FFLB profile 18S1 18S3 28S1 28S2 T. cruzi cruzi TcV (IId) Vinch101 cl1 Limari, Chile Triatomine Triatoma infestans 300 237 334 189 T. cruzi cruzi TcVI (IIe) Chaco9 cl15 Triatomine Triatoma infestans 303 241 350 214 T. cruzi cruzi TcVI (IIe) CL Brener Triatomine Triatoma infestans 302 240 350 214 T. cruzi cruzi T. cruzi cruzi TcVI (IIe) TcVI (IIe) P251 cl7 Tula cl2 Presidente Hayes, Paraguay Rio Grande do Sul, Brazil Cochabamba, Bolivia Tulahuen, Chile Human Homo sapiens Human Homo sapiens 302 302 240 240 350 350 214 214 T. cruzi cruzi T. cruzi cruzi Tcbat Tcbat TCC793 TCC1122 Sao Paulo, Brazil Sao Paulo, Brazil Bat Myotis levis Bat Myotis albescens 317 317 239 239 335 335 189 189 T cruzi marinkellei T cruzi marinkellei TCC344 TCC501 Rondonia, Brazil Rondonia, Brazil Bat Carollia perspicillata Bat Carollia perspicillata 280 280 236 236 311 311 196 196 T. dionisii-like T. dionisii-like TCC211 TCC495 Sao Paulo, Brazil Sao Paulo, Brazil Bat Eptesicus brasiliensis Bat Carolia perspicillata 261 259 227 227 307, 310 304 203 208 T. T. T. T. rangeli rangeli rangeli rangeli TrA TrA TrA TrA San Augustin TCC220 TCC369 TCC701 Colombia Para, Brazil Rondonia, Brazil Rondonia, Brazil Human Homo sapiens Monkey Saimiri sciureus Opssum Didelphis marsupialis Triatomine Rhodnius robustus 267 269 269 269 223 223 223 223 298 297 298 297 194 194 193 193 T. T. T. T. rangeli rangeli rangeli rangeli TrB TrB TrB TrB TCC010 AM80 TCC207 TCC236 Para, Brazil Amazonas, Brazil Acre, Brazil Acre, Brazil Anteater Tamandua tetradactyla Human Homo sapiens Monkey Cebuella pygmaea Monkey Saguinus f. weddelli 261 261 261 261 224 224 224 224 298 298 298 298 188 188 188 188 T. T. T. T. rangelif rangelif rangeli rangeli TrC TrC TrC TrC TCC1250 TCC1252 TCC1254 PG Panama Panama Panama Panama Triatomine Rhodnius pallescens Triatomine Rhodnius pallescens Triatomine Rhodnius pallescens Human Homo sapiens 266, 301 266, 301 266 266 223, 244 223, 244 223 223 302, 341 302, 341 302 302 191, 198 191, 198 191 191 T. rangeli TrD SC58 Santa Catarina, Brazil Rodent Echimys dasithrix 268 223 305 191, 193 T. rangeli TrE TCC643 Bat Platyrrhinus lineatus 267 223 300 186 T. rangeli T. rangeli TrE TrE TCC1182 TCC1224 Mato Grosso do Sul, Brazil Amazonas, Brazil Amazonas, Brazil Triatomine Rhodnius pictipes Triatomine Rhodnius pictipes 267 267 223 223 300 300 186 186 a b c d e f Values in parentheses are <50% the height of ‘main peak’ from the same locus. Cloned isolate. TCC = Trypanosomatid Culture Collection. Mixed infection with TCIV. Mixed infection with unidentified trypanosome. Mixed infection with TCI. 2003; Yeo et al., 2005; Corrales et al., 2009). The hybrid isolates of TcVI and TcV could be distinguished by three loci but shared patterns with TcII and TcIII respectively. This result is perhaps not surprising because these lineages are products of hybridization of TcII and TcIII (Freitas et al., 2006; Miles et al., 2009). There is geographic overlap in the distribution of these hybrid lineages and their parental lineages, especially for TcII and TcV/VI (domestic cycles across the Southern Cone). The overlap is more limited for TcIII, as it is rare in domestic cycles where TcV and TcVI are found, but there are reports of TcIII being sympatric with TcV and TcVI in Paraguay and Argentina (Chapman et al., 1984; Cardinal et al., 2008). Therefore further primers, such as those targeting ITS rDNA (Marcili et al., 2009a), or PCR-RFLP assays (Lewis et al., 2009), would be necessary to discriminate these hybrids from the parent lineages. Nevertheless, as the traditional genotyping method (Souto et al., 2006) shows combined TcII/III profiles for the hybrid lineages, FFLB can be used to differentiate mixed infections from hybrids. The newly discovered T. cruzi genotype that is so far apparently restricted to bats, TCbat, showed unique FFLB pattern, in agreement with its placement in a separated cluster in phylogenetic studies (Marcili et al., 2009a). Two other South American bat trypanosomes, T. c marinkellei and T. dionisii-like, also gave unique patterns (Table 1). The two isolates of T. dionisii-like differed in their profiles (Table 2); there is considerable heterogeneity of T. dionisii-like in South America and these two isolates belong to distinct genotypes of this species (Cavazzana et al., 2010). 3.3. Identification of Trypanosoma rangeli lineages Seventeen T. rangeli isolates belonging to the five lineages (TrA– TrE) were genotyped using FFLB (Tables 1 and 2 and Fig. 2). These lineages were previously established by phylogenetic analysis using ITS rDNA, spliced leader and CatL-like gene sequences (Maia da Silva et al., 2004b, 2007, 2009; Ortiz et al., 2009). All lineages could be differentiated, with each lineage giving a distinct combination of fragment sizes at the four loci (Table 1). The FFLB patterns of TrB were most divergent, and the sizes of three of the four loci differed from the other T. rangeli lineages, in agreement with phylogenetic studies (Maia da Silva et al., 2007, 2008; Ortiz et al., 2009). The geographical distributions of T. rangeli lineages are related to the ecogeographical structure of the Rhodnius vector species, with lineage divergence associated with sympatric vectors (Maia da Silva et al., 2004b, 2007, 2009; Vallejo et al., 2009): TrA circulates from Brazil to Guatemala and is related to both domestic and sylvatic cycles of species of the R. prolixus complex, and is commonly found infecting man; TrB so far includes only sylvatic isolates from humans and wild mammals from Brazilian Amazonia and is associated with the R. brethesi complex. TrC is related to [()TD$FIG] P.B. Hamilton et al. / Infection, Genetics and Evolution 11 (2011) 44–51 49 expected from mixed infections revealed that many of the common mixed infections that occur in natural conditions such as TcI with TcIII could be identified. T. rangeli, lineages TrA and TrC (Panama, Costa Rica and northwest Colombia), and TrA and TrB (Amazonian region) can infect the same vertebrate hosts but not the same vectors, however, all these lineages could be distinguished using FFLB. In studies of African trypanosomes, the application of FFLB has resulted in discovery of novel species and genotypes (Hamilton et al., 2008, 2009; Adams et al., 2009). In the current study, a barcode was obtained from a recent TcI culture from a marsupial (Fig. 2), Philander opossum, which differed from those of other trypanosome species examined in this study, and may represent a previously undescribed trypanosome species. 4. Conclusions Fig. 2. Example electropherograms from T. rangeli, T. dionisii-like and mixed infections. See legend to Fig. 1 for further information. domestic and sylvatic cycles of the R. pallescens complex circulating in humans, and domestic and wild mammals in Panama, Costa Rica and Colombia. Lineage TrD is known from rodents from southern Brazil; a presumed Rhodnius sp. vector of this lineage is unknown. TrE has so far only been found in bats and R. pictipes from Central and Amazon regions in Brazil. In conclusion, FFLB is a useful tool for the identification of a wide range of American trypanosomes and for lineage identification of T. cruzi and T. rangeli. The technique is quick and sensitive, as it relies on amplification of relatively small regions of DNA and fluorescence detection and is able to differentiate mixed infections. In previous studies, FFLB genotypes have been obtained from DNA isolated directly from blood (Adams et al., 2009) and digestive tracts/proboscides of insects (Hamilton et al., 2008). In the present study, mixed cultures with two species or two lineages were detected using DNA from primary cultures from the guts of triatomines, so it seems likely that American trypanosomes could also be identified without prior use of culturing, thus avoiding selection of species/genotypes. The present study also highlighted the limitations of the FFLB technique, particularly for characterisation of T. cruzi strains. These were length polymorphism within single isolates, hybrid strains and their evolutionary predecessors giving matching profiles and the inability to identify TcI sublineages. However, additional regions, such as the intergenic spacer of spliced-leader genes, which is known to vary in length between some TcI sublineages (Cura et al., in press), could also be included to provide further discrimination. FFLB also requires access to a DNA sequencer and knowledge of the system, so is not suitable for diagnosis in rural settings. Nevertheless, its ability differentiate many known (and potentially unknown) species and several of their lineages, using the same primer sets, is unique and offers an advantage over other established methods for identifying American trypanosomes and should facilitate large scale diagnostics and epidemiological studies. Acknowledgements 3.4. Identification of Blastocrithidia triatomae Many triatomines, particularly Triatoma spp., may also carry Blastocrithidia triatomae, a trypanosomatid parasite of triatomines that apparently does not have a vertebrate host. As no DNA from this species was available, the FFLB profile was estimated from the 18S rDNA sequence (AF153037). The 18S1 locus (344 bp) is 27 bp longer than all trypanosome species examined in this study, so this would not be mistaken for T. cruzi or T. rangeli. 3.5. Mixed infections and novel genotypes Mixed infections of different strains of T. rangeli and T. cruzi are common in both mammalian and triatomine hosts. In previous studies, mixed infections of African trypanosomes have been readily detected using FFLB (Hamilton et al., 2008; Adams et al., 2009). In this study, FFLB detected previously unidentified mixed infections in primary cultures from gut contents of triatomine bugs: TcI and TrC in two R. pallescens (Table 2 and Fig. 2); and TcI and TcIV in R. brethesi (Table 2). Examination of FFLB patterns We thank M. Tibayrenc, C. Barnabe, P. Diosque, Hernan Carrasco, Angela C.V. Junqueira, Vera C. Valente, Arlei Marcili, Luciana Lima and for samples used in this study. Funding from Wellcome Trust, CNPq-Brazil and EC FP7 project ChagasEpiNet. We would also like to thank two anonymous reviewers for their helpful comments. References Adams, E., Hamilton, P.B., Malele, I., Gibson, W.C., 2008. The identification, diversity and prevalence of trypanosomes in field caught tsetse in Tanzania using ITS-1 primers and fluorescent fragment length barcoding. Infect. Genet. Evol. 8, 439– 444. Adams, E.R., Hamilton, P.B., 2008. New molecular tools for the identification of trypanosome species. Future Microbiol. 3, 167–176. Adams, E.R., Hamilton, P.B., Gibson, W.C., 2010. African trypanosomes: celebrating diversity. Trends Parasitol. 26, 324–328. Adams, E.R., Hamilton, P.B., Rodrigues, A.C., Malele, I.I., Delespaux, V., Teixeira, M.M.G., Gibson, W.C., 2009. New Trypanosoma (Duttonella) vivax genotypes from tsetse flies in East Africa. Parasitology 137, 641–650. Anez, N., Crisante, G., Anez-Rojas, N., Rojas, A., Moreno, G., da Silva, F.M., Teixeira, M.M.G., 2009. Genetic typing of Trypanosoma cruzi isolates from different hosts 50 P.B. Hamilton et al. / Infection, Genetics and Evolution 11 (2011) 44–51 and geographical areas of western Venezuela. Boletin De Malariologia Y Salud Ambiental 49, 251–258. Anez, N., Crisante, G., da Silva, F.M., Rojas, A., Carrasco, H., Umezawa, E.S., Stolf, A.M.S., Ramirez, J.L., Teixeira, M.M.G., 2004. Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas’ disease. Trop. Med. Int. Health 9, 1319–1326. Avila, H.A., Sigman, D.S., Cohen, L.M., Millikan, R.C., Simpson, L., 1991. Polymerase chain-reaction amplification of Trypanosoma cruzi kinetoplast minicircle DNA isolated from whole blood lysates – diagnosis of chronic Chagas disease. Mol. Biochem. Parasit. 48, 211–221. Barnabe, C., Neubauer, K., Solari, A., Tibayrenc, M., 2001. Trypanosoma cruzi: presence of the two major phylogenetic lineages and of several lesser discrete typing units (DTUs) in Chile and Paraguay. Acta Trop. 78, 127–137. Bosseno, M.F., Garcia, L.S., Baunaure, F., Gastelum, E.M., Gutierrez, M.S., Kasten, F.L., Dumonteil, E., Breniere, S.F., 2006. Short report: Identification in triatomine vectors of feeding sources and Trypanosoma cruzi variants by heteroduplex assay and a multiplex minjexon polymerase chain reaction. Am. J. Trop. Med. Hyg. 74, 303–305. Bosseno, M.F., Barnabe, C., Sierra, M.J.R., Kengne, P., Guerrero, S., Lozano, F., Ezequiel, K., Gastelum, M., Breniere, S.F., 2009. Short Report: Wild ecotopes and food habits of Triatoma longipennis infected by Trypanosoma cruzi lineages I and II in Mexico. Am. J. Trop. Med. Hyg. 80, 988–991. Brisse, S., Henriksson, J., Barnabe, C., Douzery, E.J.P., Berkvens, D., Serrano, M., De Carvalho, M.R.C., Buck, G.A., Dujardin, J.-C., Tibayrenc, M., 2003. Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infect. Genet. Evol. 2, 173–183. Brisse, S., Verhoef, J., Tibayrenc, M., 2001. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int. J. Parasitol. 31, 1218–1226. Burgos, J.M., Altcheh, J., Bisio, M., Duffy, T., Valadares, H.M.S., Seidenstein, M.E., Piccinali, R., Freitas, J.M., Levin, M.J., Macchi, L., Macedo, A.M., Freilij, H., Schijman, A.G., 2007. Direct molecular profiling of minicircle signatures and lineages of Trypanosoma cruzi bloodstream populations causing congenital Chagas disease. Int. J. Parasitol. 37, 1319–1327. Cardinal, M.V., Lauricella, M.A., Ceballos, L.A., Lanati, L., Marcet, P.L., Levin, M.J., Kitron, U., Gurtler, R.E., Schijman, A.G., 2008. Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int. J. Parasitol. 38, 1533–1543. Cavazzana Jr., M., Marcili, A., Lima, L., da Silva, F.M., Junqueira, Â.C.V., Veludo, H.H., Viola, L.B., Campaner, M., Nunes, V.L.B., Paiva, F., Coura, J.R., Camargo, E.P., Teixeira, M.M.G., 2010. Phylogeographical, ecological and biological patterns shown by nuclear (ssrRNA and gGAPDH) and mitochondrial (Cyt b) genes of trypanosomes of the subgenus Schizotrypanum parasitic in Brazilian bats. Int. J. Parasitol. 40, 345–355. Chapman, M.D., Baggaley, R.C., Godfreyfausset, P.F., Malpas, T.J., White, G., Canese, J., Miles, M.A., 1984. Trypanosoma cruzi from the Paraguayan Chaco – isoenzyme profiles of strains isolated at Makthlawaiya. J. Protozool. 31, 482–486. Chiurillo, M.A., Crisante, G., Rojas, A., Peralta, A., Dias, M., Guevara, P., Anez, N., Ramirez, J.L., 2003. Detection of Trypanosoma cruzi and Trypanosoma rangeli infection by duplex PCR assay based on telomeric sequences. Clin. Diagn. Lab. Immunol. 10, 775–779. Corrales, R.M., Mora, M.C., Negrette, O.S., Diosque, P., Lacunza, D., Virreira, M., Breniere, S.F., Basombrio, M.A., 2009. Congenital Chagas disease involves Trypanosoma cruzi sub-lineage IId in the northwestern province of Salta, Argentina. Infect. Genet. Evol. 9, 278–282. Cura, C.I., Mejı́a-Jaramillo, A.M., Duffy, T., Burgos, J.M., Rodriguero, M., Cardinal, M.V., Kjos, S., Gurgel-Gonçalves, R., Blanchet, D., De Pablos, L.M., Tomasini, N., da Silva, A., Russomando, G., Cuba, C.A.C., Aznar, C., Abate, T., Levin, M.J., Osuna, A., Gürtler, R.E., Diosque, P., Solari, A., Triana-Chávez, O., Schijman, A.G., in press. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of splicedleader genes. Int. J. Parasitol. Fernandes, O., Santos, S.S., Cupolillo, E., Mendonca, B., Derre, R., Junqueira, A.C.V., Santos, L.C., Sturm, N.R., Naiff, R.D., Barret, T.V., Campbell, D.A., 2001. A miniexon multiplex polymerase chain reaction to distinguish the major groups of Trypanosoma cruzi and T. rangeli in the Brazilian Amazon. T. Roy. Soc. Trop. Med. H. 95, 97–99. Freitas, J.M., Augusto-Pinto, L., Pimenta, J.R., Bastos-Rodrigues, L., Gonçalves, V.F., Teixeira, S.M., Chiari, E., Junqueira, A.C., Fernandes, O., Macedo, A.M., Machado, C.R., Pena, S.D., 2006. Ancestral genomes, sex, and the population structure of Trypanosoma cruzi. PLoS Pathogens 2, e24. Freitas, J.M., Lages-Silva, E., Crema, E., Pena, S.D.J., Macedo, A.M., 2005. Real time PCR strategy for the identification of major lineages of Trypanosoma cruzi directly in chronically infected human tissues. Int. J. Parasitol. 35, 411–417. Hamano, S., Horio, M., Miura, S., Higo, H., Iihoshi, N., Noda, K., Tada, I., Takeuchi, T., 2001. Detection of kinetoplast DNA of Trypanosoma cruzi from dried feces of triatomine bugs by PCR. Parasitol. Int. 50, 135–138. Hamilton, P.B., Adams, E.R., Malele, I.I., Gibson, W.C., 2008. A novel, high throughput technique for species identification reveals a new species of tsetse-transmitted trypanosome related to the Trypanosoma brucei subgenus, Trypanozoon. Infect. Genet. Evol. 8, 26–33. Hamilton, P.B., Adams, E.R., Njiokou, F., Gibson, W.C., Cuny, G., Herder, S., 2009. Phylogenetic analysis reveals the presence of the Trypanosoma cruzi clade in African terrestrial mammals. Infect. Genet. Evol. 9. Jannin, J., Salvatella, R., 2006. Quantitative Estimates of Chagas Disease in the Americas. Pan American Health Organiszation, pp. 1–28. Lewis, M.D., Ma, J., Yeo, M., Carrasco, H.J., Llewellyn, M.S., Miles, M.A., 2009. Genotyping of Trypanosoma cruzi: systematic selection of assays allowing rapid and accurate discrimination of all known lineages. Am. J. Trop. Med. Hyg. 81, 1041–1049. Llewellyn, M.S., Lewis, M.D., Acosta, N., Yeo, M., Carrasco, H.J., Segovia, M., Vargas, J., Torrico, F., Miles, M.A., Gaunt, M.W., 2009a. Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease. PLoS Neglected Trop. Dis. 3. Llewellyn, M.S., Miles, M.A., Carrasco, H.J., Lewis, M.D., Yeo, M., Vargas, J., Torrico, F., Diosque, P., Valente, V., Valente, S.A., Gaunt, M.W., 2009. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathogens 5. Machado, C.A., Ayala, F.J., 2001. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc. Natl. Acad. Sci. U.S.A. 98, 7396–7401. Maia da Silva, F., Marcili, A., Lima, L., Cavazzana Jr., M., Ortiz, P.A., Campaner, M., Takeda, G.F., Paiva, F., Nunes, V.L.B., Camargo, E.P., Teixeira, M.M.G., 2009. Trypanosoma rangeli isolates of bats from Central Brazil: genotyping and phylogenetic analysis enable description of a new lineage using spliced-leader gene sequences. Acta Trop. 109, 199. Maia da Silva, F., Rodrigues, A.C., Campaner, M., Takata, C.S., Brigido, M.C., Junqueira, A.C., Coura, J.R., Takeda, G.F., Shaw, J.J., Teixeira, M.M., 2004. Randomly amplified polymorphic DNA analysis of Trypanosoma rangeli and allied species from human, monkeys and other sylvatic mammals of the Brazilian Amazon disclosed a new group and a species-specific marker. Parasitology 128, 283–294. Maia da Silva, F.M., Junqueira, A.C.V., Campaner, M., Rodrigues, A.C., Crisante, G., Ramirez, L.E., Caballero, C.E., Monteiro, F.A., Coura, J.R., Anez, N., Teixeira, M.M.G., 2007. Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Mol. Ecol. 16, 3361–3373. Maia da Silva, F.M., Naiff, R.D., Marcili, A., Gordo, M., Neto, J.A.D., Naiff, M.F., Franco, A.M.R., Campaner, M., Valente, V., Valente, S.A., Camargo, E.P., Teixeira, M.M.G., Miles, M.A., 2008. Infection rates and genotypes of Trypanosoma rangeli and T. cruzi infecting free-ranging Saguinus bicolor (Callitrichidae), a critically endangered primate of the Amazon Rainforest. Acta Trop. 107, 168–173. Maia da Silva, F.M., Noyes, H., Campaner, M., Junqueira, A.C., Coura, J.R., Anez, N., Shaw, J.J., Stevens, J.R., Teixeira, M.M., 2004. Phylogeny, taxonomy and grouping of Trypanosoma rangeli isolates from man, triatomines and sylvatic mammals from widespread geographical origin based on SSU and ITS ribosomal sequences. Parasitology 129, 549–561. Marcili, A., Lima, L., Cavazzana, M.J., Junqueira, A.C.V., Veludo, H.H., Maia da Silva, F., Campaner, M., Paiva, F., Nunes, V.L.B., Teixeira, M.M.G., 2009a. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 136, 241–255. Marcili, A., Lima, L., Valente, V.C., Valente, S.A., Batista, J.S., Junqueira, A.C.V., Souza, A.I., da Rosa, J.A., Campaner, M., Lewis, M.D., Llewellyn, M.S., Miles, M.A., Teixeira, M.M.G., 2009b. Comparative phylogeography of Trypanosoma cruzi TCIIc: new hosts, association with terrestrial ecotopes, and spatial clustering. Infect. Genet. Evol. 9, 1265–1274. Marcili, A., Valente, V.C., Valente, S.A., Junqueira, A.C.V., da Silva, F.M., Pinto, A.Y.D., Naiff, R.D., Campaner, M., Coura, J.R., Camargo, E.P., Miles, M.A., Teixeira, M.M.G., 2009. Trypanosoma cruzi in Brazilian Amazonia: Lineages TCI and TCIIa in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. Int. J. Parasitol. 39, 615–623. Mejia-Jaramillo, A.M., Pena, V.H., Triana-Chavez, O., 2009. Trypanosoma cruzi: biological characterization of lineages I and II supports the predominance of lineage I in Colombia. Exp. Parasitol. 121, 83–91. Miles, M.A., Llewellyn, M.S., Lewis, M.D., Yeo, M., Baleela, R., Fitzpatrick, S., Gaunt, M.W., Mauricio, I.L., 2009. The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136, 1509–1528. Miles, M.A., Povoa, M.M., Desouza, A.A., Lainson, R., Shaw, J.J., Ketteridge, D.S., 1981. Chagass disease in the Amazon basin. 2. The distribution of Trypanosoma cruzi aymodemes 1 and zymodemes 3 in Para State, North Brazil. T. Roy. Soc. Trop. Med. H. 75, 667–674. Ortiz, P.A., Maia da Silva, F., Cortez, A.P., Lima, L., Campaner, M., Pral, E.M.F., Alfieri, S.C., Teixeira, M.M.G., 2009. Genes of cathepsin L-like proteases in Trypanosoma rangeli isolates: markers for diagnosis, genotyping and phylogenetic relationships. Acta Trop. 112, 249–259. Samudio, F., Ortega-Barria, E., Saldana, A., Calzada, J., 2007. Predominance of Trypanosoma cruzi I among Panamanian sylvatic isolates. Acta Trop. 101, 178–181. Schijman, A.G., Lauricella, M.A., Marcet, P.L., Duffy, T., Cardinal, M.V., Bisio, M., Levin, M.J., Kitron, U., Gurtler, R.E., 2006. Differential detection of Blastocrithidia triatomae and Trypanosoma cruzi by amplification of 24s alpha ribosomal RNA genes in faeces of sylvatic triatomine species from rural northwestern Argentina. Acta Trop. 99, 50–54. Schofield, C.J., Jannin, J., Salvatella, R., 2006. The future of Chagas disease control. Trends Parasitol. 22, 583–588. Souto, R.P., Fernandes, O., Macedo, A.M., Campbell, D.A., Zingales, B., 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasit. 83, 141–152. P.B. Hamilton et al. / Infection, Genetics and Evolution 11 (2011) 44–51 Stevens, J., Teixeira, M.M., Bingle, L.E., Gibson, W.C., 1999. The taxonomic position and evolutionary relationships of Trypanosoma rangeli. Int. J. Parasitol. 29, 749– 757. Teixeira, M.M.G., daSilva, F.M., Marcili, A., Umezawa, E.S., Shikanai-Yasuda, M.A., Cunha-Neto, E., Kalil, J., Stolf, N., Stolf, A.M.S., 2006. Short communication: Trypanosoma cruzi lineage I in endomyocardial biopsy from a north-eastern Brazilian patient at end-stage chronic chagasic cardiomyopathy. Trop. Med. Int. Health 11, 294–298. Valente, S., Valente, V.D., Pinto, A., Cesar, M.D.B., dos Santosb, M.P., Miranda, C.O.S., Cuervo, P., Fernandes, O., 2009. Analysis of an acute Chagas disease outbreak in the Brazilian Amazon: human cases, triatomines, reservoir mammals and parasites. T. Roy. Soc. Trop. Med. H. 103, 291–297. Vallejo, G.A., Guhl, F., Schaub, G.A., 2009. Triatominae-Trypanosoma cruzi/T. rangeli: vector-parasite interactions. Acta Trop. 110, 137–147. Vargas, N., Souto, R.P., Carranza, J.C., Vallejo, G.A., Zingales, B., 2000. Amplification of a specific repetitive DNA sequence for Trypanosoma rangeli identification and its potential application in epidemiological investigations. Exp. Parasitol. 96, 147– 159. Virreira, M., Torrico, F., Truyens, C., Alonso-Vega, C., Solano, M., Carlier, Y., Svoboda, M., 2003. Comparison of polymerase chain reaction methods for reliable and 51 easy detection of congenital Trypanosoma cruzi infection. Am. J. Trop. Med. Hyg. 68, 574–582. Westenberger, S.J., Barnabe, C., Campbell, D.A., Sturm, N.R., 2005. Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171, 527– 543. Yeo, M., Acosta, N., Llewellyn, M., Sanchez, H., Adamson, S., Miles, G.A.J., Lopez, E., Gonzalez, N., Patterson, J.S., Gaunt, M.W., de Arias, A.R., Miles, M.A., 2005. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int. J. Parasitol. 35, 225–233. Yeo, M., Lewis, M.D., Carrasco, H.J., Acosta, N., Llewellyn, M., Valente, S.A.D., Valente, V.D., de Arias, A.R., Miles, M.A., 2007. Resolution of multiclonal infections of Trypanosoma cruzi from naturally infected triatomine bugs and from experimentally infected mice by direct plating on a sensitive solid medium. Int. J. Parasitol. 37, 111–120. Zingales, B., Andrade, S.G., Briones, M.R.S., Campbell, D.A., Chiari, E., Fernandes, O., Guhl, F., Lages-Silva, E., Macedo, A.M., Machado, C.R., Miles, M.A., Romanha, A.J., Sturm, N.R., Tibayrenc, M., Schijman, A.G., 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem. I. Oswaldo Cruz 104, 1051–1054.
© Copyright 2026 Paperzz