Q3: S1 0 0 1 1 S2 0 1 0 1 Behavior Hold Current Value Shift left Shift Right Parallel Load A 4-bits Universal Shift register is shown as below: Parallel Outputs Parallel Inputs Q4-a (i) Case 1: Sequence 0,1,2,3,4,7,0 Q2 0 0 0 0 1 1 1 1 Circuit: P.S Q1 0 0 1 1 0 0 1 1 N.S Q1 0 1 1 0 1 X X 0 Q0 1 0 1 0 1 X X 0 FF Inputs T2 T1 T0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 X X X X X X 1 1 1 Q0 0 1 0 1 0 1 0 1 Q2 0 0 0 1 1 X X 0 Q2 0 1 Q1Q0 00 01 11 0 0 1 0 X 1 T2= Q1Q0 10 0 X Q2 0 1 Q1Q0 00 01 11 0 1 1 1 X 1 T1= Q0+Q2 10 0 X Q2 0 1 Q1Q0 00 01 11 1 1 1 1 X 1 T0= 1 10 1 X Q4-b (i) Case Q4-a (i) Case 2: Sequence 0,1, 3,4,7,0 P.S N.S Q2 Q1 Q0 Q2 Q1 Q0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 X X X 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 X X X 1 1 0 X X X 1 1 1 0 0 0 FF Inputs T2 T1 T0 0 0 1 0 1 0 X X X 1 1 1 0 1 1 X X X X X X 1 1 1 Q4-a (ii) Case 2: Sequence 0,1, 3,4,7,0 Q2 0 1 Q2 0 1 Q1Q0 00 01 11 0 0 1 0 X 1 T2=Q1 00 0 1 Q1Q0 01 11 1 1 X 1 10 X X 10 X X T1=Q0+Q2 Q2 0 1 00 1 1 Q1Q0 01 11 0 1 X 1 T0=Q0’+Q1+Q2 Circuit: 10 X X Q8: Solution 1 State table P.S. input N.S. output Q1 Q0 X Q1 Q0 Z 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 J‐K1 J1 K1 0 X 0 X 1 X 0 X X 1 X 1 X 1 X 1 J‐K0 J0 K0 0 X 1 X X 0 X 0 X 1 X 0 0 X 1 X K‐maps J1 Q1Q0\X 00 01 11 10 J1=Q0X' Z Q1Q0\X 00 01 11 10 Z=Q1Q0X 0 0 1 X X 1 0 0 X X 0 0 0 0 0 1 0 0 1 0 K1 Q1Q0\X 00 01 11 10 K1=1 0 X X 1 1 1 X X 1 1 J0 Q1Q0\X 00 01 11 10 J0=X 0 0 X X 0 1 1 X X 1 K0 Q1Q0\X 00 01 11 10 K0=Q1X' 0 X 0 1 X 1 X 0 0 X Circuit Q8: Solution2 Q1 Z q1q0\X 00 01 11 10 0 0 0 0 0 Z=q1q0X 1 0 0 1 0 Q0 q1q0\X 00 01 11 10 0 0 1 0 0 1 0 0 0 0 q1q0\X 00 01 11 10 Q1=q1'q0X' Q0=q1'q0+X Circuit X Z q1 Q1 Q0 0 0 1 1 1 0 0 1 1 1 Question 9 (a) Y 1 = x 1' x 2 + x 2 y 1 Y 2 = x1 y 2 + x 2 Z = Y 1 ' Y 2 (b) N.S ( P.S y2 y1 ) Output (Z) x1x2 x1x2 y2 y1 00 01 11 10 00 01 11 10 00 00 11 10 00 0 0 1 0 01 00 11 11 00 0 0 0 0 10 00 11 10 10 0 0 1 1 10 00 11 11 10 0 0 0 1 (c) At row 00 y 2 y 1 = 0 0 ⇒ 1 1 w h ile x1 x 2 = 0 0 ⇒ 0 1 It is noncritical race because 0 0 ⇒ 0 1 ⇒ 1 1 or 0 0 ⇒ 1 0 ⇒ 1 1 At row 11 y 2 y1 = 1 1 ⇒ 0 0 w h i le x1 x 2 = 0 1 ⇒ 0 0 It is noncritical race because 1 1 ⇒ 0 1 ⇒ 0 0 or 1 1 ⇒ 1 0 ⇒ 0 0 Question 10: The rows in the primitive flow table are merged by first obtaining all compatible pairs of states from the implication table shown in Fig. 1. b a,c ✗ c ✗ b,d ✗ d b,d ✗ ✗ e b,d ✗ f ✓ g f, h ✗ h f, h ✗ a,c✗ a e,g ✗ b,d ✗ a,c ✗ f,h ✗ e,g ✗ f,h ✗ a,c ✗ a,c ✗ ✓ b,d ✗ ✓ ✓ b c ✓ ✓ e,g ✗ b,d ✗ ✓ ✗ d,e ✗ e,g ✗ c,f ✗ f,h ✗ d e e,g ✗ f,h ✗ ✗ ✓ f g Fig. 1 Implication Table The squares that contain check marks define the compatible pairs: (a,f), (b,g), (b,h), (c,h), (d,e), (d,f), (e,f), (g,h) The maximal compatibles are obtained from the merger diagram shown in Fig. 2, which is: (a,f), (b,g,h), (c,h), (d,e,f) In this question, the minimal collection of compatibles is also the maximal compatible set. a h b c g d f e Fig. 2 Merger Diagram The reduced flow table is shown in Fig. 3. The one shown in part (a) of the figure retains the original state symbols but merges the corresponding rows. In part (b) the second alternative shows clearly a four-state flow table with only four letter symbols for the states. (a) (b) Fig 3 Reduced Flow Table Based on Fig 3 part (b), we draw the transition diagram as shown in Fig 4. There is a race-free assignment in the minimized flow table without the need of extra states. This is because there are no diagonal lines in the transition diagram. a = 00 b = 01 d = 10 c = 11 Fig. 4 Transition Diagram
© Copyright 2026 Paperzz