How mmc scalars and gravitons affect fermions

S. P. Miao
National Cheng Kung University, Taiwan
FRW Geometry
Homogeneous, isotropic and spatial flat:
𝑑𝑑𝑆𝑆 2 = βˆ’π‘‘π‘‘π‘‘π‘‘ 2 + π‘Žπ‘Ž 2 𝑑𝑑 𝑑𝑑π‘₯π‘₯⃑ βˆ™ 𝑑𝑑π‘₯π‘₯⃑
Physical distance: π‘Žπ‘Ž 𝑑𝑑 𝑑𝑑π‘₯π‘₯⃑
π‘˜π‘˜
Physical momentum: π‘Žπ‘Ž(𝑑𝑑)
Max. accelerated: 𝐻𝐻 𝑑𝑑 = 𝐻𝐻 = const.  π‘Žπ‘Ž(𝑑𝑑)~𝑒𝑒 𝐻𝐻𝐻𝐻
𝐺𝐺𝐻𝐻 2 < 5 × 10βˆ’11  𝐻𝐻 < 1014 Gev
QG still perturbative, not negligible
Particles almost effectively massless
Locally de Sitter Background
Spacetime Expansion Strengthens
Loop Effects
 How to think about QFT Effects?
 Classical response to virtual particles
 Maximum IR Enhancements:
 PERSISTENCE TIME  m = 0 + inflation
 EMERGENCE RATE  no conformal invariance
 Realized by
 Massless, minimally coupled scalars
 Gravitons
E-Time Uncertainty Principle
 βˆ†π‘‘π‘‘βˆ†πΈπΈ > 1 to resolve βˆ†πΈπΈ  Hence βˆ†π‘‘π‘‘βˆ†πΈπΈ < 1 to NOT resolve
 Flat Space: Virtual pair has βˆ†E = 2 π‘šπ‘š2 + π‘˜π‘˜2
 Hence can last βˆ†t < 2
1
π‘šπ‘š2+π‘˜π‘˜2
 Eg: Vacuum polarization
 Most for e± because smallest m
 Smallest k’s live longest  EM stronger at shorter distance (less
polarization)
 FRW: E(t) = 2


π‘šπ‘š2
+
π‘˜π‘˜ 2
π‘Žπ‘Ž 2 (𝑑𝑑)
𝑑𝑑+βˆ†π‘‘π‘‘
βˆ†π‘‘π‘‘βˆ†πΈπΈ  2 βˆ«π‘‘π‘‘
𝑑𝑑𝑑𝑑 β€² 𝐸𝐸 𝑑𝑑 β€² < 1
𝑑𝑑+Δ𝑑𝑑
π‘˜π‘˜
π‘šπ‘š = 0  2k βˆ«π‘‘π‘‘
𝑑𝑑𝑑𝑑 β€² π‘Žπ‘Ž 𝑑𝑑 β€² < 1
 Any m = 0 virtual with k < Ha(t) live forever (in de Sitter)
Killer Symmetry Suppresses
Emergence Rate
 Conformal invariance is a killer symmetry:
𝑔𝑔𝑔µΞ½ = Ξ©2 𝑔𝑔µΞ½  β„’ β†’ β„’β€²
 re-defined fields  β„’β€² β†’ β„’
1
 EM: β„’ β€² = βˆ’ 4 𝐹𝐹µΟ 𝐹𝐹νσ 𝑔𝑔µΞ½ 𝑔𝑔ρσ βˆ’π‘”π‘”Ξ©π·π·βˆ’4 = β„’ in D =4
 βˆ’π‘‘π‘‘π‘‘π‘‘ 2 + π‘Žπ‘Ž 2 𝑑𝑑π‘₯π‘₯ 2 = π‘Žπ‘Ž 2 (βˆ’π‘‘π‘‘Ξ·2 + 𝑑𝑑π‘₯π‘₯ 2 )  π‘Žπ‘Žπ‘Žπ‘ŽΞ· = 𝑑𝑑𝑑𝑑
 Conformal invariance  same locally (in conformal
coordinates) as flat
 Hence
 Hence
𝑑𝑑𝑑𝑑
𝑑𝑑η
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
= Γ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
=
Γ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
π‘Žπ‘Ž(𝑑𝑑)
 Any m=0, conformal virtuals that emerge Do live forever, but
few emerge
MMC + Fermions – Fermion self energy
β„’1 = ─
1
2
οΏ½ Ψφ βˆ’π‘”π‘”
βˆ’π‘”π‘” πœ•πœ•µΟ†πœ•πœ•Ξ½ φ𝑔𝑔 µΞ½ βˆ’ f Ξ¨
οΏ½ 𝑒𝑒 µ (π‘–π‘–πœ•πœ•µ – 1 𝐴𝐴µπ‘π‘π‘π‘ 𝐽𝐽 𝑐𝑐𝑐𝑐 )Ξ¨
+ βˆ’π‘”π‘” Ξ¨
𝑏𝑏
2
(astro-ph/0309593 by Prokopec, Woodard)
1
1
οΏ½ Ψφ βˆ’π‘”π‘”
β„’ 2 = βˆ’ 2 βˆ’π‘”π‘” πœ•πœ•µ Ο†πœ•πœ•Ξ½ φ𝑔𝑔 µΞ½ βˆ’ 2 π‘šπ‘š 2 Ο†2 βˆ’ ξ𝑅𝑅φ2 βˆ’ fΞ¨
οΏ½ 𝑒𝑒 µ (π‘–π‘–πœ•πœ•µ –
+ βˆ’π‘”π‘” Ξ¨
𝑏𝑏
1
2
𝐴𝐴µπ‘π‘π‘π‘ 𝐽𝐽 𝑐𝑐𝑐𝑐 )Ξ¨
(gr-qc/0602011 by Garbrecht. Prokopec)
 Compute i [𝑖𝑖 Σ𝑗𝑗 ] (x; x’) from mmc at 1-loop in dim. Reg.
MMC + Fermions – consequence I
 Absorb UV using field strength renormalization
iδ𝑧𝑧2 (π‘Žπ‘Žπ‘Žπ‘Žπ‘Ž)
π·π·βˆ’1
2
µ
γ𝑖𝑖𝑖𝑖
iπœ•πœ•µ δ𝐷𝐷 (x-x’) ; δ𝑧𝑧2 =
𝐷𝐷
Ξ“( βˆ’1)
𝑓𝑓2
2
𝐷𝐷/2
(π·π·βˆ’4)(π·π·βˆ’3)
16 Ο€
 Quantum-correct Dirac Equation using S-K formalism
βˆ’π‘”π‘”π‘–π‘–(Ξ³µ 𝐷𝐷µ )𝑖𝑖𝑖𝑖 Ψ𝑗𝑗 (x)βˆ’ ∫ 𝑑𝑑 4 π‘₯π‘₯ β€² [𝑖𝑖 Σ𝑗𝑗 ] π‘₯π‘₯; π‘₯π‘₯ β€² Ψ𝑗𝑗 (xβ€²) = 0
 particle production  |Ο†| grow  develop mass for β„’1 & β„’ 2

2
E.g. π‘šπ‘š Ξ¨
β‰…
3𝑓𝑓2 𝐻𝐻 4
8Ο€2 (π‘šπ‘š2 + ξ𝑅𝑅)
for β„’ 2
 β„’ 1 : Ξ¨ (late time)  (𝑁𝑁 βˆ’
Ο€
 β„’ 2 : Ξ¨± = βˆ“ exp [ i 2 Ξ½± ] [
3 βˆ’1
)4
4
exp [ ±π‘–𝑖
Ο€π‘˜π‘˜ 1/2
]
4𝐻𝐻𝐻𝐻
(1)
𝑓𝑓
3Ο€
𝐻𝐻± (
3
4
(𝑁𝑁 βˆ’ ) 3/2 ] ; 𝑁𝑁 ≑ ln (π‘Žπ‘Ž)
π‘˜π‘˜
)
𝐻𝐻𝐻𝐻
1
2
; Ξ½± = βˆ“ π‘–π‘–π‘šπ‘š Ξ¨ /𝐻𝐻
 Fermion mode fun. ~ declining oscillatory behavior
MMC + Fermions – Consequence IIa
β„’3 = βˆ’
1
2
βˆ’π‘”π‘” πœ•πœ•µ Ο†πœ•πœ•Ξ½
φ𝑔𝑔 µΞ½
οΏ½ 𝑒𝑒 µ (π‘–π‘–πœ•πœ•µ –
+ βˆ’π‘”π‘” Ξ¨
𝑏𝑏
1
2
βˆ’
δξ𝑅𝑅φ2
𝐴𝐴µπ‘π‘π‘π‘ 𝐽𝐽 𝑐𝑐𝑐𝑐 )Ξ¨
1
βˆ’ 4! δλφ4
οΏ½ Ψφ βˆ’π‘”π‘”
βˆ’π‘”π‘” βˆ’ f Ξ¨
(gr-qc/0602110 by Miao, Woodard)
 Integrate out fermions at leading log. order  𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 (Ο†)
δξ =
𝐷𝐷
2
4𝑓𝑓 2 𝐻𝐻 π·π·βˆ’4 Ξ“(1βˆ’ )
(4Ο€)𝐷𝐷/2 𝐷𝐷(π·π·βˆ’1)
𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 (Ο†) = βˆ’
=
𝐻𝐻 4
+
𝑓𝑓 2
24Ο€ 2
{2γ𝑧𝑧
8Ο€ 2
(1 βˆ’ Ξ³) ; δλ =
𝐷𝐷
2
24𝑓𝑓 4 𝐻𝐻 π·π·βˆ’4 Ξ“(1βˆ’ )
𝑧𝑧
(4Ο€)𝐷𝐷/2
+
3𝑓𝑓 4
(ΞΎ(3)
Ο€2
βˆ’ Ξ³)
βˆ’ ΞΆ 3 βˆ’ Ξ³ 𝑧𝑧 2 + 2 οΏ½ 𝑑𝑑𝑑𝑑 π‘₯π‘₯ + π‘₯π‘₯ 3 πœ“πœ“ 1 + 𝑖𝑖𝑖𝑖 + πœ“πœ“ 1 βˆ’ 𝑖𝑖𝑖𝑖
𝐻𝐻 4 ∞
βˆ’1 𝑛𝑛
βˆ’ 4Ο€2 βˆ‘π‘›π‘›=2 𝑛𝑛+1
0
𝑓𝑓φ
𝜁𝜁 2𝑛𝑛 βˆ’ 1 βˆ’ 𝜁𝜁 2𝑛𝑛 + 1 𝑧𝑧 𝑛𝑛+1 ; 𝑧𝑧 ≑ ( 𝐻𝐻 )2 ; 𝑧𝑧 β‰ͺ 1
 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 (Ο†) unbounded below (always negative)
MMC + Fermions – Consequence IIb
 Compute 𝑇𝑇µΞ½ at leading log. order  𝑇𝑇µΞ½ β†’ βˆ’π‘‰π‘‰π‘ π‘  (Ο†)𝑔𝑔µΞ½
𝑉𝑉𝑠𝑠 (Ο†) =
=
𝐻𝐻 4
βˆ’ 8Ο€2
{
𝐻𝐻 4 1
{ 𝑧𝑧
8Ο€2 2
1
2
1
1
βˆ’ Ξ³ 𝑧𝑧 +[ 4 βˆ’ Ξ³ + ΞΆ 3 ]𝑧𝑧 2 βˆ’ 2 [𝑧𝑧 + 𝑧𝑧 2 ] πœ“πœ“ 1 + 𝑖𝑖𝑖𝑖 + πœ“πœ“ 1 βˆ’ 𝑖𝑖𝑖𝑖 ]
1
𝑛𝑛
𝑛𝑛+1 } ; 𝑧𝑧 β‰ͺ 1
+ 4 𝑧𝑧 2 βˆ’ βˆ‘βˆž
𝑛𝑛=2 (βˆ’1) 𝜁𝜁 2𝑛𝑛 βˆ’ 1 βˆ’ 𝜁𝜁 2𝑛𝑛 + 1 𝑧𝑧
 unbounded below but positive first, then negative
 𝑧𝑧 ≫ 1, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 (Ο†) & 𝑉𝑉𝑠𝑠 (Ο†) both  Coleman-Weinberg form

𝐻𝐻 4 1 2
βˆ’ 8Ο€2 {2 𝑧𝑧 ln(|𝑧𝑧|) βˆ’
1
ΞΆ 3 + 4 βˆ’ Ξ³ 𝑧𝑧 2 + zln 𝑧𝑧 βˆ’
 Flat space Standard Model  stable
5
6
βˆ’ 2Ξ³ z + O(ln z )}
∡ negative V + positive V of gauge boson  constraint on Higgs mass
π‘˜π‘˜
 Negative growing fermion vacuum energy: 𝐸𝐸 = βˆ’ π‘šπ‘š 2 + ( π‘Žπ‘Ž) 2
 particle production  |Ο†| grow  develop mass
𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 & 𝑉𝑉𝑠𝑠 for Yukawa
𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐻𝐻 4
βˆ’ 8Ο€2 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒
z
; 𝑉𝑉𝑠𝑠 =
𝐻𝐻 4
βˆ’ 8Ο€2 𝑓𝑓𝑠𝑠
z
𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 falls for Yukawa & grows for SQED
Gravitons + Massless Fermion
arXiv:0511140 by Miao, Woodard
β„’=
1
𝑅𝑅
16π𝐺𝐺
οΏ½ 𝑒𝑒 µ γ𝑏𝑏 𝑖𝑖𝐷𝐷µ Ξ¨ βˆ’π‘”π‘” + c-terms
βˆ’π‘”π‘” +Ξ¨
𝑏𝑏
 Compute i[𝑖𝑖 Σ𝑗𝑗 ](π‘₯π‘₯; π‘₯π‘₯ β€² )from gravitons at 1 loop in dim. reg.
 Renormalize with BPHZ counter terms
οΏ½ [𝑖𝑖(𝛾𝛾 µ 𝐷𝐷µ)2 +
βˆ†β„’ = Ξ±1ΞΊ2 Ξ¨
𝐷𝐷
𝑅𝑅
π·π·βˆ’1
οΏ½ 𝑖𝑖(𝛾𝛾 µ 𝐷𝐷µ)Ξ¨ βˆ’π‘”π‘”
]𝑖𝑖(𝛾𝛾 µπ·π·µ )Ξ¨ βˆ’π‘”π‘” +Ξ± 2ΞΊ2 𝑅𝑅Ψ
οΏ½ 𝐻𝐻 2𝑖𝑖(Ξ³π‘˜π‘˜ π·π·π‘˜π‘˜ )Ξ¨ βˆ’π‘”π‘” (non-invariant c-term: comment later)
+Ξ± 3ΞΊ2 Ξ¨
 Quantum-correct Dirac equation using S-K formalism
βˆ’π‘”π‘”π‘–π‘–(Ξ³µπ·π·µ )𝑖𝑖𝑖𝑖 Ψ𝑗𝑗 (x)βˆ’ ∫ 𝑑𝑑 4 π‘₯π‘₯ β€² [ 𝑖𝑖 Σ𝑗𝑗 ] π‘₯π‘₯; π‘₯π‘₯ β€² Ψ𝑗𝑗 (xβ€²) = 0
Gravitons + Massless Fermion
 1st IR log using dimensional regularization in de Sitter
 Fermion mode fun. ~#𝐺𝐺𝐻𝐻 2 ln[π‘Žπ‘Ž 𝑑𝑑 ] at 1-loop
 Perturbation breaks down at ln [π‘Žπ‘Ž 𝑑𝑑
1
]~ 2
𝐺𝐺𝐻𝐻
 fermions propagate through the sea of IR gravitons 
buffed by random walking of them  mode fun. grows
 secular effects from spin-spin interactions




No #𝐺𝐺𝐻𝐻2 ln[π‘Žπ‘Ž 𝑑𝑑 ] in ``QG + MMC’’ (Kahya & Woodard)
IR gravitons only couple to mmc through red-shift K.E.
But fermions has extra SPIN in addition (0803.2377)
simple rules for catching leading log. has derived
 It differs from Starobinsky’s IR truncation
Gravitons + Massless Fermion – Consequences
 QG + light fermions ( m β‰ͺ H )
 Suppress: how fermions propagate
Ο‰
 𝑒𝑒(𝑑𝑑, π‘˜π‘˜)~𝑓𝑓(𝐻𝐻 )𝑒𝑒 βˆ’π‘–π‘–Ο‰π‘‘π‘‘ , Ο‰ =
π‘šπ‘š2 + π‘˜π‘˜2/π‘Žπ‘Ž2(𝑑𝑑)
 u oscillates  interactions at different times cancel
 Enhance: how they interact with gravity
 New (mass) interaction does not fall
 Expect field strength ~#𝐺𝐺𝐻𝐻2 π‘Žπ‘Ž 𝑑𝑑 ln[π‘Žπ‘Ž 𝑑𝑑 ]
 Change πΈπΈπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆπ‘ˆ : < 𝑇𝑇µΞ½ >β‰  0
 B-mode polarization but it is order of (𝐺𝐺𝐻𝐻2 )2
 Toy model for the inflationary baryogenesis
 QG + EM ( Leonard, Woodard ) : show secular effects
 QG + QG ( Mora, Woodard ) : expect secular effects
Gravitons + Massive Fermion
arXiv: 1207.5241 by Miao
β„’=
1
𝑅𝑅
16π𝐺𝐺
οΏ½ 𝑒𝑒 µ γ𝑏𝑏 𝑖𝑖𝐷𝐷µ Ξ¨ βˆ’π‘”π‘” βˆ’ π‘šπ‘šΞ¨
οΏ½ Ξ¨ + c-terms
βˆ’π‘”π‘” +Ξ¨
𝑏𝑏
 Massive fermion propagator is not that simple in dS
 From the solution of Candelas and Raine

𝑖𝑖𝑖𝑖 π‘šπ‘š π‘₯π‘₯; π‘₯π‘₯
𝐢𝐢.𝑅𝑅
=
π·π·βˆ’1
π‘Žπ‘Žπ‘Žπ‘Žβ€² βˆ’ 2
𝑖𝑖𝑖𝑖 π‘šπ‘š (π‘₯π‘₯; π‘₯π‘₯ β€² )
Gravitons + Massive Fermionβ€”Massive
Fermion Propagator
 Infinite series can’t be reduced to any elementary function
 Finite from the infinite series even in 𝐷𝐷 = 4
 In 𝐷𝐷 = 4, the series tend to cancel
𝐷𝐷
2
 But they both are multiplied by Ξ“(2 βˆ’ )
 π‘šπ‘š β‰ͺ 𝐻𝐻 (order m,1-loop)
 Massless fermion prop.  𝑖𝑖𝑖𝑖 π‘₯π‘₯; π‘₯π‘₯ β€² =
𝐷𝐷
Ξ“( 2 βˆ’1)
4π𝐷𝐷/2
1
𝑖𝑖γµ πœ•πœ•µ βˆ†π‘₯π‘₯ π·π·βˆ’2
Old GR. Prop. & Non-inv. C-terms
 Old gauge noncovariant but SIMPLE
π‘”π‘”πœ‡πœ‡Ξ½ ≑ π‘Žπ‘Ž 2 [Ξ· πœ‡πœ‡Ξ½ + ΞΊβ„Žπœ‡πœ‡πœ‡ ]
𝐼𝐼
𝑖𝑖[πœ‡πœ‡Ξ½ βˆ†πœŒπœŒπœŒπœŒ ] π‘₯π‘₯; π‘₯π‘₯ β€² = βˆ‘πΌπΌ=𝐴𝐴,𝐡𝐡,𝐢𝐢 [πœ‡πœ‡Ξ½ π‘‡π‘‡πœ‡πœ‡Ξ½
] × π‘–π‘–βˆ†πΌπΌ π‘₯π‘₯; π‘₯π‘₯ β€²
𝐼𝐼 ] are constants
 [πœ‡πœ‡Ξ½ π‘‡π‘‡πœŒπœŒπœŒπœŒ
 π‘–π‘–βˆ†πΌπΌ (π‘₯π‘₯; π‘₯π‘₯ β€² ) are simple functions in D=4
 𝑦𝑦(π‘₯π‘₯; π‘₯π‘₯ β€² ) ≑ 𝐻𝐻2 π‘Žπ‘Žπ‘Žπ‘Žπ‘Ž π‘₯π‘₯βƒ— βˆ’ π‘₯π‘₯βƒ—β€²
 π‘–π‘–βˆ†π΄π΄ ~
1
𝑦𝑦
2
βˆ’ Ξ· βˆ’ Ξ·β€² βˆ’ 𝑖𝑖𝑖𝑖
βˆ’ ln 𝑦𝑦 + ln(π‘Žπ‘Žπ‘Žπ‘Žβ€² ) ,
π‘–π‘–βˆ†π΅π΅ ~ π‘–π‘–βˆ†πΆπΆ ~
2
1
𝑦𝑦
 C-terms: regulation tech. + gauge fixing (break special spatial conf.)
 non-inv. C-term
 Old GR. Prop. breaks time dilatation
Gauge Issue of Graviton Prop.
 Average gauge fixing versus exact gauge fixing
 Covariant gauge fixing term to β„’ 
 Divergent response for a point source (GR) (Mottola et al.)
 On-shell singularity for M2(x; xβ€²) of SQED in the de Sitter invariant
analogue of Feynman gauge (Woodard & Kahya)
 linearization instability
 Gauge theory, background isometries, spatial Tn
 Non de Sitter invariant gauge (old graviton prop.)
 imposing exact gauge condition (new graviton prop.)
(arXiv:1106.0925 by Miao,Tsamis & Woodard)
(arXiv:1205.4468 by Mora, Tsamis & Woodard)
 The coefficient of ln[π‘Žπ‘Ž 𝑑𝑑 ] for the old GR. Prop. the same as that
in the new GR. Prop.
Our Conjecture, Inv. Op. & observables
arXiv:1204.1784 by Miao & Woodard
Throw away gauge-fixed Green’s fun. ?
 We construct the flat space S-matrix from them!
 Need to separate physical information from unphysical
 Inv. Op. β‰  observable

Every gauge fixed GF represents some invariant
𝑑𝑑
𝐴𝐴 0 𝑑𝑑, π‘₯π‘₯ = 0 = 𝐴𝐴1(0, π‘₯π‘₯)  𝐴𝐴1 𝑑𝑑, π‘₯π‘₯ = ∫0 𝑑𝑑𝑑𝑑 𝐹𝐹01 (𝑠𝑠, π‘₯π‘₯)
 No cosmological S-matrix  what is being measured?
 Maybe leading secular effects gauge independent
 The coefficient of ln[π‘Žπ‘Ž 𝑑𝑑 ] for the old GR. Prop. the same as that
in the new GR. Prop.
 NB these effects aren’t present in flat space
 Cf. poles terms of gauge fixed GF’s in flat space QFT
 How to check  re-compute in other gauges
Why some QG Results are Reliable
 QG not renomalizable
 No physical principle fixes the finite part
𝑖𝑖κ2 { βˆ†Ξ±1
π‘šπ‘š 2
πœ•πœ•
π‘Žπ‘Ž
+ βˆ†Ξ±2 π‘šπ‘šπ‘šπ‘šπœ•πœ•0 + βˆ†Ξ±3 π‘šπ‘šπ‘šπ‘šΞ³0 Ξ³π‘˜π‘˜ πœ•πœ•π‘˜π‘˜ + βˆ†Ξ±4 𝐻𝐻2 π‘šπ‘šπ‘šπ‘š }Ξ΄4 (π‘₯π‘₯ βˆ’ π‘₯π‘₯ β€² )
But loops of massless  non-analytic contribution can’t be affected by
local counterterms
 Nonlocal terms dominated over Δα at late time
𝑖𝑖𝑖𝑖2
16Ο€2
{ 3ln[π‘Žπ‘Ž] πœ•πœ• 2 +
97ln [π‘Žπ‘Ž]
π‘šπ‘šπ‘šπ‘šπœ•πœ•0
16
+
9ln[π‘Žπ‘Ž]
0 Ξ³π‘˜π‘˜ πœ•πœ•
π‘šπ‘šπ‘šπ‘šΞ³
π‘˜π‘˜
16
 Low energy effective theory
+
 Fermi theory versus Standard Model etc.
 The UV completion of QG cannot
 Add new massless particles
 Change the behavior of long range forces
95ln[π‘Žπ‘Ž] 2
𝐻𝐻 π‘šπ‘šπ‘šπ‘š
8
} Ξ΄4 (π‘₯π‘₯ βˆ’ π‘₯π‘₯ β€² )
Massive βˆ’π‘–π‘–[𝑖𝑖 Σ𝑗𝑗 ] π‘₯π‘₯; π‘₯π‘₯ β€² at 1-loop(still on going)
+ 2-page long tabulated nonlocal terms!
 Some π‘Žπ‘Ž 3 ln[π‘Žπ‘Ž 𝑑𝑑 ] (or π‘Žπ‘Ž 2 ln[π‘Žπ‘Ž 𝑑𝑑 ]) might get cancelled!
Non-Pertuabative Technique I
 Starobinsky’s formalism for a scalar model
 Truncate scalars in IR & set in D = 4 (No UV div. at leading log)
 Re-sum IR logs for 𝑉𝑉(Ο†) from below
β„’=─
Dφ +
1
2
βˆ’π‘”π‘” πœ•πœ•µ Ο†πœ•πœ•Ξ½ φ𝑔𝑔µΞ½ βˆ’ V(Ο†) βˆ’π‘”π‘”
𝑉𝑉𝑉(Ο†)
1+δ𝑧𝑧
= 0  Ο† = Ο†0 βˆ’
Ο† 𝑑𝑑, π‘₯π‘₯⃑ = Ο†0 𝑑𝑑, π‘₯π‘₯⃑ βˆ’
1 𝑉𝑉 β€² Ο†0
𝐷𝐷 1+δ𝑧𝑧
1 𝑉𝑉𝑉(Ο†0 )
𝐷𝐷 1+δ𝑧𝑧
+
;
1 𝑉𝑉 β€²β€² Ο†0
𝐷𝐷 2 1+δ𝑧𝑧
1
𝐷𝐷
≑ 𝐺𝐺(π‘₯π‘₯; π‘₯π‘₯π‘₯) retarded GF
+β‹―
 Each and only scalars produces IR Log (no derivative)
 Actives: produce IR Log
 Passives: propagate through IR Log
Non-Pertuabative Technique II
 actives + passives (βˆ‚β€²s passives), Eg: Yukawa, SQED
 integrate out passives & evaluate the effective action with
constant actives (effective potential)
 UV div. at leading Log  turn D on
 βˆ‚β€²s actives + passives or βˆ‚β€²s passives, Eg: all QG model
(0803.2377 by Miao & Woodard)




Can’t infrared truncate the field
can’t either ignore or integrate out βˆ‚β€²s actives
Keep dimensional regulation on
Simple rule:
Questions
 How to construct non-perturbative Tech. for QG models?
 Check simple rules for other QG models
 Eg: QG + massive fermions serves as ``data’’
 Can QFT effects play a role for a modification of gravity on
galactic (& larger) scales ?
 Effective potential from Yukawa, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐻𝐻 4
𝑓𝑓2 Ο†2
βˆ’ 8Ο€2 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 𝐻𝐻 2
 𝑅𝑅 = 12𝐻𝐻2 in de Sitter  what are those factors of H for a
general metric?
 Is the leading IR effects a gauge artifact?
 Conjecture: leading IR might be gauge-independent
 No S matrix or invariant rates in FRW
 Invariant op. doesn’t guarantee ``physical observables’’