ENGINEERING TRIPOS PART IB JUNE 2012
CHAIRMAN PROF. P DAVIDSON
•
k
MONDAY 4 TH JUNE 2012
m
2 TO 4
=
IX
PAPER 2 SOLUTIONS - STRUCTURES
AUTHORS:
DR. F CIRAK
DR. D MCCONNELL
Created by Diane Unwin
Friday, July 13,2012
Part IB, Paper 2 - Structures, 2011/12
1.
(a)
L
The second moment of area for the thin-walled square is
-2L3 t
3
The second moment of area for the cruciform is
The ratio of the second moments of both cross-sections has to be equal
l~
4
[e
xx
viz
I
FC
Structures
PartIB
(b)
L
W
The torsion constant for a thin-walled closed cross-section is defined as
4A2
J= __
e
J: ds
dt
.r
The torsion constant of the square is
The torsion constant of the equilateral triangle is
I
J3
J3
2
Ae=-W-W -W
2
2
4
4
=;,-f _ 3W t _ ~ 3
- 4-35 - 4 W t
The ration of the torsion constants is
(c)
2
Structures
PartIB
FC
x
Parameters for one (horizontal) semi-circle
Centroid
L
17:-t11s
=
2
!o1r: (L- sin 0 )
02
2
2
Lt dO = - L t cos 0 11r: = Lt
2
4
02
L
=> 11s =
17:
Second moment ofs area
I~~
~~
=
=> I~c; =
=>
1r: 112-dO
Lt
(L
= !o1r:
-sinO
2
0
2
!o0
)2 -dO
Lt
2
L3 t 17:
16
r _ L3 t 17:
16
11"1 -
Second moments of area around the centroid
1';1 =
L3 t 17:
16
Second moment of area for the entire cross-section
lu
= 2 (~'"
+"~ (~+~;) ') +21';'
L3t 17:
2(
16
L3 t 17: L 3t
= -- - 2
17:
L3t
217:
+
17:L3t
8
+2+
L3 t
+ L 3t + -
17:
L 3t
L 3t
217:
L 3t17:)
+16
= 2.5708L 3t
Alternatively, the second moments of area for the semi-circle can be determined with
the equations for the curved rod given in Mechanics Data Book
e _ 17:Ltk2
I rl'l1' - 2 x
3
Part IB
Structures FC
-------------------------------------------------------------:rr:
with a = ~ and a
2"
Torsion constant of the entire cross-section
Ae
= L 2 + 2rc (L)2
2" = L2 + rcL2
f
2.
dS
2
= 2rcL
t
dt
(a) Maximum displacement using virtual work
w
r
,'1--------
..
I
x
Virtual moment distribution M(x)
=
I·x Moment distribution due to w I
I
I w
IX3
M(x) -xw(x)-x = -~-x = --w
2
3
6 L
6L Principle of virtual work r
I wL
EI 6L Jo x dx = EI 30
I w
I· <5
L 4
4
(b) i. Although the system is statically indeterminate the bending moments in the beam
can be determined without making use of the force method.
Vertical deflection at Point A
4
Structures PartIB
I . SvEI
=
J
FC
M(x)M(x) dx
= ~ wIL2 L
8
8
wt L4
2
+
(2
L
6
3WIL4
2
2
w IL
WIL2) ~ _ ~~ w IL
8 + 32
2 32 8
4
wt L4
wIL
128 + 128 48 96
Alternatively, the vertical deflection can be obtained by superposing Data Book
cases.
Rotation of the left support
wt L3
24EI -
L2 L
Wt 32 6EI
w I L2 L
-8- 3EI
=
L3
-WI 192EI
Vertical deflection
Sv
=
L4
L3 L
wl128EI +wI192E12
ii. Horizontal deflection at Point A
To determine the horizontal deflection, first the moments in the columns need to be
determined. To this end, consider a statically determinate system where the joint
between the left column and beam is released
Compatibility
alX+ao=O
Horizontal displacement due to virtual unit load
2L3
al = 3EI
Horizontal displacement due to W2
W2 L 4
30EI
5
FC
Structures
Part IB
1
L
L
Horizontal force at the joint
After knowing the shear force at the top of the left column its horizontal deflection
can be computed
4
2
= I ~ L W2 L = 1 w2L h
EI3
20
EI 60 Note, this deflection is the same as for a single cantilever beam with twice the EI. a
3.
(a)
Axial stress pR
2t
O'a
250· 103 . I 41.667MPa
2.3.10- 3 Hoop stress pR
t
O'h = -
Shear stress = 2 -41.667 MPa = 83.33MPa
600.103 T
r---- 21CR2 t - 2ll· I -3· 10- 3
(b)
6
31.83MPa
Fe
Structures
Part IB
(c)
Von Mises criterion
This gives for plain stress
(0"3
= 0)
From the Mohr's circle we obtain
0"1
=
~()"
+
4
7
J+
r2
_1 ()"2
16
FC
Structures
PartIB
o3r-____~~____~______~~~--~------+_-~
The square root expression in the previous equations is abbreviated with R.
~a2 + ~ aR + R2 + ~ a 2 - ~aR + R2 _ ~ a 2 + R2
16
2
16
2
16 y2
9 a2 +3R2 = y2
16 ~a2+3't'2+2.a2 = y2
16
16 ~a2+3't'2
4
8
y2
~
p
r
Dcl,C
~
'A11 ~ \ ~"" \e.\\ ~
~.or--r
Vv",\
~)t. \-~ f~'
~)
"'r'o
f ~\-
_'. 2 IT ~ \z
~
yY'--o
"b k
~
lr
(?)
J
4~
b
9G\ ~ f\~
Lt (:-)
__
~ 'r"'
~
6') '"
1 <... ~
( .( '-"- yY\..'\v--, ...t J
~~ «..,.~\r_)
LW -, ,
/
I 6
-2.
)
"'''-\\lul, ~< "~l(.
~ t ') t--~~ ~ ~ (4 P.) .,:
V<--')
A.
S.
I
BJ3 2 w, L.:f9')t:
if · W, ': -
-
L.
-r
~
~ ~ ~ ;'
2 YV\
_ .,
1..
Wz-":: 4 Y\1~
"'" f )
1.
\J~"r
---.
l.lJ :
tfJ
Y'r\f(Z6~ 2~)
'W! x e9
. " WJ -
((~)
l~\~ \]
('Olc.a.c...
[L
3 )')\()
-e
L1,'ht:..r..\
Vl
~ rn ~
\~ 'a LA. '"-- l
7:
.J <>
v'\..o
\ "'"'-
,(0.
~f}'rv-'1~
tL
~ ~)c/h~ ,)''''
LP f"Y'" ~ ~_/'l- f ~ll \ "b l .
1:n:. YY'Lo~l'l ~ 's£I-L"" ~~'l~
~
VOJ
to:
1 ~ "'-"-~:
uv'
'(I~~ f\ ~
~
Lf'\"'£I\'
I
J
0
{~"C: ~LI I ~
t.
Q~l'\'\o()'''''' '.,.J:Yl L-~ A·r- ~
~r~, c1 ~ ~
l.
~~~ ~.~ (l'~ ~ 'Yk
\.
I . .1M.
"
\. " _
\J
\,
yt....\ c::' \..l.-t...
, ~)
La...... ~, ~<.'I ~ (>/'I..:> ~
y~
l,",
\;~t-.
~~00.).
'It. -=
~L
-:!:)
-
I
2..ft.
1,), I ~ 7 1..
I . l:, 0 2. ,(
W ~ lY\(J ()1--) B(2)
-c ('+ r
( e
~
t;IJ -:.
=.
\'bGTh,
~"'-lt· ) -1-1)) l 4':;'
t.v
l.h\tr~' \l' ~) \-~ ~-Jt
"{ \(.\ ~ a\--
~ eJ c:. J\ ' (.,
YY\ 'f'N:.)" ~
c.r...c..\ l {\)
YY\7
L"'1'''-)..~'\ ,)
.1>'_:
Yv1( ==
f'-
Yl{L.
~ '()
~y I \)1:) ),'::: Ir-O l\ 'h...tJ I"'
2.
tlo ~ ~le,~ l'l.
. I
,'/1 wt L'"
-,--'"---'~-7--'-/_/---'
I
~~
'1' ~ \ J
('
~
')0 '"
A VV""-
I~
1\ - J0 0
..... m~ -:
~ Do Yl1.,~)or ~ YV\.. 7
'" '(
-d)
J[' 01\
I'c,
\
_t -;: ... , L \' ,\ nJ\l""
4
L
!1\J\f, i;? ,
_ ,
lool\~l 'i.e) ~ ~\cy~.
'j b ~T
1 ei,
~
1(){) ~
--:- /Y\t\ ~ -=
+
"t ~ cry
~..- M f"'-II-~
~ I c'v ,,('rtrJ )
~~~- ~-:-: \".:
-=
)t)J1v\.
( (7 ""~)...
f\'(...
~d..
CA1)
~ \~ S~ """"'--
LJ f)/h..'
lou ~ y r..,.
.
S -
3. 'fY\p
(J- ~
. .
~ J"1 ~:1 r
S-
2. 3
-::!.
4.
)z u
""'
10:1
600
G(9 ~&r ~0_~ ~)
__
"U
r~ ~" :"d.''LfJ
t!
1\0\- Qe..lI-, ~. ~"'7 ~ frt-j) ~ ~ ...., \'::v"-,,,""""", "".~ ~t:..a
f
e-r-.A.
YV1. p )...0 ~~
I
v.. OK
.
M
'ff'~'V
•
Yl{~ ~ tt?_L." ~ 20~ i\ ),J~
4
~
~J\.. c-..C,~~ \~b ~
_ /: 'fY\ (J
< -~;/J
~~<~YYlp .
~
">\ -::.
k
bL-l
).)1-
~
'-J'
O't,.( lZ-h..
l.e
~o ~ ~ Zoo 1\ -; - Tf\p
.. ~
2... cO
A
-=-
i ~,
J-=-)
~
l==-
Zoo"
11-t.M '1.:o}', I L
(
.1-,
vI!.)
© Copyright 2026 Paperzz