k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Magnetic anisotropy of transitionmetal dimers and isolated adatoms on nonmagnetic substrates P. Błoński, J. Hafner Fakultät für Physik and Center for Computational Materials Science, Universität Wien k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Outline ➢ Cluster geometry ➢ Motivation ➢ Computational method ➢ Trends in binding energies, geometries, magnetic moments – collinear and noncollinear calculations ➢ Summary and conclusions Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Cluster geometry CLUSTERS – finite aggregates of atoms and molecules bound by forces which may be metallic, covalent, ionic, hydrogenbonded or vanderWaals in characters and can contain from a few to tens of thousand of atoms MOLECULES usually have a well defined composition and structure Dozens of isomers even for a small cluster (Ar13) Davis et al. J. Chem. Phys. 86 (1987) 6456 Type Nature of bonding Binding energy Ionic Examples (NaCl)n, Nan Fn1 ionic bonds 2 – 4 eV Covalent C60, Sn covalent bonding 1 – 4 eV Simple and noble metals Nan, Aln , Agn metallic bonds 0.5 – 3 eV Transition metal van der Waals Nin, Pdn, Ptn metallocovalent rare gas clusters dispersion Magnetic anisotropy of small transitionmetal clusters 0.5 – 3 eV < 0.3 eV k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Cluster geometry isolated adatom dumbbell tetrahedron equilateral triangle ➢ trigonal bipyramid cluster geometry optimization – without any symmetry constraints structural distortion may be driven by different mechanism: ➢ ● a genuine instability of the assumed structure under the action of interatomic forces ● a JahnTeller mechanism if partially occupied eigenstates exist ● magnetostructural effects Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Spinorbit constant Fe Co Ni Ru Rh Pd Os Ir Pt Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Motivation ➢ Unique catalytic properties: ultrafine dispersed Pd clusters supported on Al – superior CO oxidation catalysts than single crystals of Pd; enhanced activity for reduction for nitric oxide by carbon monoxide; higher activity and better selectivity in hydrogenation process ➢ Unusual magnetic properties: nonmagnetic in the bulk materials – magnetic when dimensionality is reduced ➢ Possibility to assume noncrystallographic arrangements (icosahedral or other) – an important factor distinguishing clusters from other low dimensional structures Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Motivation ➢ Unique catalytic properties: ultrafine dispersed Pd clusters supported on Al – superior CO oxidation catalysts than single crystals of Pd; enhanced activity for reduction for nitric oxide by carbon monoxide; higher activity and better selectivity in hydrogenation process ➢ Unusual magnetic properties: nonmagnetic in the bulk materials – magnetic when dimensionality is reduced ➢ Possibility to assume noncrystallographic arrangements (icosahedral or other) – an important factor distinguishing clusters from other low dimensional structures A football (soccer ball) with full icosahedral symmetry. This commonplace object is not, however, a regular icosahedron; it is a spherical truncated icosahedron. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Motivation ➢ Unique catalytic properties: ultrafine dispersed Pd clusters supported on Al – superior CO oxidation catalysts than single crystals of Pd; enhanced activity for reduction for nitric oxide by carbon monoxide; higher activity and better selectivity in hydrogenation process ➢ Unusual magnetic properties: nonmagnetic in the bulk materials – magnetic when dimensionality is reduced ➢ Possibility to assume noncrystallographic arrangements (icosahedral or other) – an important factor distinguishing clusters from other low dimensional structures A football (soccer ball) with full icosahedral symmetry. This object is not, however, a regular icosahedron; it is a spherical truncated icosahedron. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Noncrystallographic symmetry, together with variation in bond lengths and coordination – important changes in the electronic properties – significant consequence for the magnetic and chemical properties Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Motivation ➢ Magnetic properties:in present stateoftheart hard disk drives hundreds of singledomain particles hold one bit of information – an important line of research has centered on molecular magnets1 very small transition metal clusters embedded on appropriate matrix might reestablish the limit for magnetic storage2,3 ➢ quantity that is of interest is the magnetic anisotropy representing the barrier for magnetic moments reorientation and arises from the spinorbit interaction ➢ the calculation of the magnetic anisotropy is a problem of fundamental importance. Magnetic anisotropy, magnetooptical spectra, magnetic dichroism and other important properties are caused by spinorbit coupling. 1 S. Maekawa and T. Shinjo, Spin Dependent Transport in Magnetic Structures, Taylor & Francis, London, 2002. P. Błoński and J. Hafner, PRB, submitted (2009). 3 T. O. Strandberg, et al., Nature Materials 6, 648 (2007); Phys. Rev. B 77, 174416. 2 Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Computational details DFTbased code (VASP) ➢ Exc – spinpolarized GGA (PW91) ➢ ➢ Electronion interaction – PAW – fullpotential allelectron projector augmented wave method ➢ Hybrid functionals mixing densityfunctional and HartreeFock exchange (PBE0 and HSE03 functionals) ➢ DFT+U method (an orbitaldependent onsite Coulomb repulsion U) Ecut = 250 700 eV ➢ ➢ Scalar relativistic and fully relativistic calculations including spin orbit coupling (allowing for noncollinearity of spin and orbital moments) Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Computational details Cluster calc.: 10 x 10 x 10 Å3 cubic supercell ➢ ➢ Adatom adsorption: slabs consisting of 5 to 10 atomic layers with 5 x 5 surface unit cell (up to 251 atoms) and a vacuum space of 16 Å ➢ Stringent relaxation criterion, 107 eV essential Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Computational details Cluster calc.: 10 x 10 x 10 Å3 cubic supercell ➢ ➢ Adatom adsorption: slabs consisting of 5 to 10 atomic layers with 5 x 5 surface unit cell (up to 251 atoms) and a vacuum space of 16 Å ➢ Stringent relaxation criterion, 107 eV essential All moments set along global z axis, x axis, [1 1 1 ] direction Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Computational details Cluster calc.: 10 x 10 x 10 Å3 cubic supercell ➢ ➢ Adatom adsorption: slabs consisting of 5 to 10 atomic layers with 5 x 5 surface unit cell (up to 251 atoms) and a vacuum space of 16 Å ➢ Stringent relaxation criterion, 107 eV essential All moments set along global z axis, x axis, [1 1 1 ] direction inplane out of plane Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Co2 scalar relat. inc. SO coupl. z S 2.00 J x 1.96 Rh2 scalar relat. S 2.34 1.96 2.00 Ir2 inc. SO coupl. J 2.00 2.21 scalar relat. S 2.84 2.21 2.00 inc. SO coupl. J 2.00 2.21 2.92 2.22 2.00 2.34 2.84 2.92 S,L = 0.0o S,L = 0.0o S,L = 0.0o Axial Perp. µS µL µS µL MAE 3.90 0.78 3.90 0.32 7.1 4.09 2.00 4.14 0.33 50 32 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) Axial Perp. µS µL µS µL MAE 3.86 1.82 3.80 0.5 47.3 136 3.98 2.12 3.93 0.63 104 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) Magnetic anisotropy of small transitionmetal clusters Axial Perp. µS µL µS µL MAE 3.88 1.96 3.42 0.94 69.8 413 4.00 1.34 4.10 1.24 100 L. FernandezSeivane and J. Ferrer, PRL 99, 183401 (2007) k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Co2 scalar relat. inc. SO coupl. z S 2.00 J x 1.96 Rh2 scalar relat. S 2.34 1.96 2.00 Ir2 J 2.00 2.21 scalar relat. inc. SO coupl. S 2.84 2.21 2.00 inc. SO coupl. J 2.00 2.21 2.92 2.22 2.00 2.34 2.84 2.92 S,L = 0.0o S,L = 0.0o S,L = 0.0o Axial Perp. µS µL µS µL MAE 3.90 0.78 3.90 0.32 7.1 4.09 2.00 4.14 0.33 50 32 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) Axial Perp. µS µL µS µL MAE 3.86 1.82 3.80 0.5 47.3 136 3.98 2.12 3.93 0.63 104 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) Axial Perp. µS µL µS µL MAE 3.88 1.96 3.42 0.94 69.8 413 4.00 1.34 4.10 1.24 100 L. FernandezSeivane and J. Ferrer, PRL 99, 183401 (2007) ➢ the easy magnetic axis oriented along the dimer axis ➢ scalarrelativistic calculations ground state with S=2 ➢ spinorbit coupling (SOC) leaves the interatomic distance unchanged for Co2 and Rh2, only for the Ir2 the bondlength increases by 0.01 Å ➢ SOC mixes different spineigenstates a slight reduction of the magnetic spin moment more pronounced with increasing strength of SOC ➢ strong SOC induces an anisotropy of the spinmoment Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Co2 scalar relat. inc. SO coupl. z S 2.00 Rh2 J x S 2.34 1.96 1.96 2.00 inc. SO coupl. J scalar relat. S 2.00 2.84 2.21 2.21 2.00 inc. SO coupl. J 2.00 2.21 2.92 2.22 2.00 2.34 2.84 2.92 S,L = 0.0o S,L = 0.0o S,L = 0.0o Axial Perp. µS µL µS µL MAE 3.90 0.78 3.90 0.32 7.1 4.09 2.00 4.14 0.33 50 32 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) ➢ scalar relat. Ir2 Axial Perp. µS µL µS µL MAE 3.86 1.82 3.80 0.5 47.3 136 3.98 2.12 3.93 0.63 104 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) Axial Perp. µS µL µS µL MAE 3.88 1.96 3.42 0.94 69.8 413 4.00 1.34 4.10 1.24 100 L. FernandezSeivane and J. Ferrer, PRL 99, 183401 (2007) Bruno's1 expression: MAE µS ∆µL MAE should be about 12 times as large for Rh2 than for Co2 we find an increase by a factor of 7 ➢ Ir2 a substantial anisotropy of the spin moment Bruno's formula cannot be expected to be valid ➢ Van der Laan's2 approximate expression accounts for the spin anisotropy in the limit of a weak SOC not the case for Ir2 1 P. Bruno, Phys. Rev. B 39, 865 (1989). G. van der Laan, J. Phys.: Condens. Matter 10, 3239 (1998). 2 Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Co2 Rh2 Magnetic anisotropy of small transitionmetal clusters Ir2 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Co2 ➢ Rh2 Ir2 HOMO a doubly degenerate antibonding d* minority state occupied by one electron only ➢ For d* the SOC splitting is 0.94 (Ir2), 0.41 (Rh2) and 0.26 eV (Co2) ➢ Lowering of the d* states dominant effect determining the MAE Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Ni2 scalar relat. inc. SO coupl. z S 1.00 Pd2 J x S 1.28 2.08 scalar relat. 2.09 1.00 2.48 1.00 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) 1.00 2.33 2.31 2.38 1.00 1.17 Axial Perp. µS µL µS µL MAE 1.96 0.02 1.98 0.36 2.3 1.94 0.86 1.98 0.53 5.0 inc. SO coupl. J 2.49 S,L = 0.0 2.31 o 404 S,L = 0.0o Axial Perp. µS µL µS µL MAE 1.88 2.74 1.34 0.80 46.3 742 1.90 2.40 1.65 1.20 220 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) L. FernandezSeivane and J. Ferrer, PRL 99, 183401 (2007) L = ~1.00 B if d > 2.5 Å d = 2.35 Å for perp. magnet. 1.18 2.09 1.18 S,L = 0.0o Axial Perp. µS µL µS µL MAE 1.98 0.12 1.98 0.38 5.9 7.6 scalar relat. S 1.17 1.00 S,L = 0.0o 101 inc. SO coupl. J 1.28 Axial Perp. µS µL µS µL MAE 1.98 0.58 1.96 0.30 6.5 1.99 0.88 1.99 0.45 11 Pt2 101 T. O. Strandberget al., PRB 77, 174416 (2008) ∆E = 27 meV Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Ni2 scalar relat. inc. SO coupl. z S 1.00 Pd2 J x scalar relat. S 1.28 2.08 J 1.00 101 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) 1.00 2.31 2.33 2.38 1.00 1.17 Axial Perp. µS µL µS µL MAE 1.96 0.02 1.98 0.36 2.3 1.94 0.86 1.98 0.53 5.0 inc. SO coupl. J 2.49 S,L = 0.0 S,L = 0.0o scalar relat. S 1.17 1.00 1.28 Axial Perp. µS µL µS µL MAE 1.98 0.58 1.96 0.30 6.5 1.99 0.88 1.99 0.45 11 inc. SO coupl. 2.48 2.09 1.00 Pt2 2.31 o 404 S,L = 0.0o Axial Perp. µS µL µS µL MAE 1.88 2.74 1.34 0.80 46.3 742 1.90 2.40 1.65 1.20 220 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) L. FernandezSeivane and J. Ferrer, PRL 99, 183401 (2007) L = ~1.00 B if d > 2.5 Å d = 2.35 Å for perp. magnet. 1.18 2.09 ➢ 1.18 length and almost equal spin moments, but widely S,L = 0.0o Axial Perp. µS µL µS µL MAE 1.98 0.12 1.98 0.38 5.9 7.6 101 different orbital moments ➢ Pd2 discontinuous change of the orbital magnetic moment if the dimer bond length is increased beyond T. O. Strandberget al., PRB 77, 174416 (2008) ∆E = 27 meV Ni2 two locally stable solutions with equal bond 2.50 Å ➢ Pt2 SOC influences the bond length Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Ni2 Pd2 Magnetic anisotropy of small transitionmetal clusters Pt2 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Ni2 ➢ ➢ Pd2 Pt2 ground state triplet (S=1) state, but the KohnSham eigenvalue spectra differ already at the scalarrelativistic level different electronic configurations of the free atoms in their ground state all doubly degenerate dimer eigenstates either fully occupied by two electrons or empty MAE relatively low unless SOC leads to a reordering and a change of occupation of the levels close to the Fermi energy. Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Fe2 scalar relat. inc. SO coupl. z S 3.00 J x 1.98 Ru2 scalar relat. S 3.08 1.98 3.00 2.07 2.00 2.09 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) Magnetic anisotropy of small transitionmetal clusters Perp. µS µL MAE 3.94 0.24 36.5 334 inc. SO coupl. J 2.00 2.09 2.07 S,L = 0.0o Axial µS µL 3.98 0 scalar relat. S 2.09 2.00 S,L = 0.0o 24 inc. SO coupl. J 3.08 Axial Perp. µS µL µS µL MAE 5.84 0.32 5.84 0.16 0.3 5.84 1.74 6.00 1.89 6.00 0.19 32 Os2 2.92 2.10 2.00 2.92 S,L = 0.0o Axial Perp. µS µL µS µL MAE 3.74 0.8 3.48 0.62 28.8 885 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Fe2 scalar relat. inc. SO coupl. z S 3.00 Ru2 J x scalar relat. S 3.08 1.98 1.98 3.00 2.07 2.00 scalar relat. S 2.09 2.00 S,L = 0.0o 24 inc. SO coupl. J 3.08 Axial Perp. µS µL µS µL MAE 5.84 0.32 5.84 0.16 0.3 5.84 1.74 6.00 1.89 6.00 0.19 32 Os2 J 2.00 2.92 2.09 2.07 2.09 Perp. µS µL MAE 3.94 0.24 36.5 334 2.10 2.00 2.92 S,L = 0.0o S,L = 0.0o Axial µS µL 3.98 0 inc. SO coupl. Axial Perp. µS µL µS µL MAE 3.74 0.8 3.48 0.62 28.8 885 D. Fritsch et al., J. Comp. Chem. 29, 2210 (2008) ➢ Fe2 the result for the orbital magnetic moment depends on the initialization – the high orbital moment solution higher in energy by 86 meV ➢ Ru2 zero orbital magnetic moment for a magnetization along the dimer axis (as for Pd2) ➢ Os2 – spin anisotropy larger than the orbital anisotropy Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Fe2 Ru2 Magnetic anisotropy of small transitionmetal clusters Os2 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Fe2 ➢ ➢ ➢ ➢ Ru2 Os2 the electronic ground state configurations are s2d6 for Fe and Os, sd7 for Ru Fe2 – SOC coupling splits for a parallel magnetic axis the degenerate d HOMO, but as the center of gravity is upshifted, the energy gain is very modest Ru2 – the change in the sum of the oneelectron energies is 40 meV calculated perpendicular MAE = 35.5 meV Os2 – the axial anisotropy (MAE = 29 meV) results from the splitting of the doubly degenerate d* HOMO occupied by only one electron Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results – postDFT calculations Ni2 Pd2 HybridFunctional calc. scalar relat. S J 1.00 2.26 HybridFunctional calc. inc. SO coupl. z scalar relat. S 1.24 x 2.26 1.00 inc. SO coupl. 2.56 scalar relat. S 1.24 0.00 1.24 S,L = 0.0o Axial Perp. µS µL µS µL MAE 1.96 0.02 1.98 0.50 0.3 343 inc. SO coupl. J 1.00 2.50 0.00 S,L = 0.0o 101 HybridFunctional calc. J 1.24 Axial Perp. µS µL µS µL MAE 1.98 0.50 1.96 0.30 3.7 Pt2 2.31 2.31 2.43 1.00 2.31 S,L = 0.0o Axial Perp. µS µL µS µL MAE 1.88 3.02 1.28 1.06 30.5 743 d = 2.42 Å for perp. magnet. DFT+U (3 eV) DFT+U (3 eV) Axial Perp. µS µL µS µL MAE 2.00 0.42 2.00 0.36 17.0 114 384 Axial Perp. µS µL µS µL MAE 1.90 2.90 1.48 0.88 19.5 644 1.18 1.21 2.08 1.21 Axial Perp. µS µL µS µL MAE 1.94 0.02 1.98 0.40 2.1 DFT+U (3 eV) 2.07 1.18 2.38 1.18 S,L = 0.0o Axial Perp. µS µL µS µL MAE 1.98 0.02 2.00 0.36 6.2 117 Magnetic anisotropy of small transitionmetal clusters 1.18 DFT+U (2 eV) Axial Perp. µS µL µS µL MAE 1.90 2.82 1.40 0.84 13.3 708 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Pt2 – Hybrid Functional Pt2 – GGAU (U = 2 eV) Magnetic anisotropy of small transitionmetal clusters Pt2 – GGAU (U = 5 eV) k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results Pt2 – Hybrid Functional Pt2 – GGAU (U = 2 eV) ➢ ➢ ➢ Pt2 – GGAU (U = 5 eV) the main effect of the admixture of a fraction of HartreeFock exchange is to increase the exchange splitting of the partially occupied eigenstates the effect of the Hubbardtype onsite potential U is again to increase the exchange splitting of partially occupied eigenstates At a modest value of U=2 eV – enhanced spin and orbital moments, an increased exchange splitting of the d* states and an increased SOC splitting Magnetic anisotropy of small transitionmetal clusters k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Summary ➢ SOC has almost no influence on the dimer bondlength ➢ the mixing of different spineigenstates – the spin moment is no longer an integer multiple of µB when SOC is included ➢ SOC induces a slight reduction of the spin moment by 0.02 to 0.25 µB, increasing with the strength of the SOC ➢ for the heavier elements SOC induces an anisotropy of the spin moments ➢ the determination of the relativistic ground state – hampered by the existence of multiple local minima with different orbital moments ➢ mixing orbitaldependent HartreeFock with DFT exchange – an increased bondlength for Ni and Pt dimers, spin moments unaffected, orbital moments slightly increased for Pd and Pt this hardly affects the MAE ➢ the effect of U is to increase the exchange splitting of the partially occupied dstates. For Pt2 (U = 5 eV) a change in sign of the MAE unrealistic eigenvalue spectrum Magnetic anisotropy of small transitionmetal clusters Results triangles z k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Ni Pd Pt All moments set along z axis All moments set along z axis All moments set along z axis or [1 1 1] equilateral triangle x S isosceles triangle S,L = 3o 0.67 2.20 0.67 3 2 2.20 µS µL µJ 0.67 1.07 0.91 0.91 0.67 2.21 |µ| x y z 0.02 0.00 2.19 2.19 0.00 0.00 0.58 0.58 0.04 0.00 2.77 2.77 All moments set along [1 1 1] direction isoscales triangle |µ| x y z 1.43 0.00 1.66 2.19 0.37 0.00 0.44 0.58 1.80 0.00 2.10 2.77 0.92 equilateral triangle S,L = 0o 0.67 2.52 µS µL µJ S,L = 0o 2.50 0.84 0.84 0.67 2.51 |µ| x y z 0.00 0.00 1.66 1.66 0.00 0.00 0.94 0.94 0.00 0.00 2.60 2.60 All moments set along [1 1 1] direction isoscales triangle |µ| x y z 1.44 0.00 0.83 1.66 0.79 0.00 0.32 0.85 2.23 0.00 1.15 2.51 0.67 2.50 S,L = 25o S,L 0o µS µL µJ isosceles triangle 0.67 2.53 S,L = 48o S,L 0o µS µL µJ isosceles triangle J 1 0.67 equilateral triangle µS µL µJ 1.40 0.82 0.82 2.51 S,L = 46o |µ| x y z 0.00 0.00 1.51 1.51 0.00 0.00 1.53 1.53 0.00 0.00 3.04 3.04 S,L 0 o All moments set along [1 1 1] direction isoscales triangle µS µL µJ |µ| x y z 0.62 0.00 1.34 1.49 0.46 0.00 0.99 1.09 1.08 0.00 2.33 2.57 ∆Ez[1 1 1] < 0.2 meV ∆Ez[1 1 1] < 0.1 meV ∆Ez[1 1 1] < 0.1 meV All moments set along y axis equilateral triangle, d = 2.21 Å All moments set along y axis equilateral triangle, d = 2.53 Å All moments set along y axis isoscales triangle µS µL µJ |µ| x y z 0.00 2.19 0.00 2.19 0.00 1.80 0.00 1.80 0.00 3.99 0.00 3.99 ∆Ezy = 7.0 meV µS µL µJ |µ| x y z 0.00 1.74 0.00 1.74 0.00 0.75 0.00 0.75 0.00 2.49 0.00 2.49 ∆Ezy = 2.9 meV Magnetic anisotropy of small transitionmetal clusters µS µL µJ |µ| x y z 0.00 0.20 0.00 0.20 0.00 0.05 0.00 0.05 0.00 0.25 0.00 0.25 ∆Ezy = 13.2 meV Results triangles z k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Ni Pd Pt All moments set along z axis All moments set along z axis All moments set along z axis or [1 1 1] equilateral triangle x S isosceles triangle S,L = 3o 0.67 2.20 0.67 3 2 2.20 µS µL µJ 0.67 1.07 equilateral triangle 0.91 0.91 2.21 S,L = 48 s isosceles triangle 0.67 2.52 o |µ| x y z 0.02 0.00 2.19 2.19 0.00 0.00 0.58 0.58 0.04 0.00 2.77 2.77 All moments set along [1 1 1] direction isoscales triangle |µ| x y z 1.43 0.00 1.66 2.19 0.37 0.00 0.44 0.58 1.80 0.00 2.10 2.77 0.67 µS µL µJ 0.84 2.50 0.84 0.67 S,L = 25 o |µ| x y z 0.00 0.00 1.66 1.66 0.00 0.00 0.94 0.94 0.00 0.00 2.60 2.60 S,L 0o All moments set along [1 1 1] direction isoscales triangle µS µL µJ S,L = 0o 0.67 0.92 l S,L 0o µS µL µJ isosceles triangle S,L = 0o J 1 0.67 equilateral triangle |µ| x y z 1.44 0.00 0.83 1.66 0.79 0.00 0.32 0.85 2.23 0.00 1.15 2.51 0.67 2.50 µS µL µJ 1.40 0.82 0.82 2.51 S,L = 46o |µ| x y z 0.00 0.00 1.51 1.51 0.00 0.00 1.53 1.53 0.00 0.00 3.04 3.04 S,L 0 o All moments set along [1 1 1] direction isoscales triangle µS µL µJ |µ| x y z 0.62 0.00 1.34 1.49 0.46 0.00 0.99 1.09 1.08 0.00 2.33 2.57 ∆Ez[1 1 1] < 0.2 meV ∆Ez[1 1 1] < 0.1 meV ∆Ez[1 1 1] < 0.1 meV All moments set along y axis equilateral triangle, d = 2.21 Å All moments set along y axis equilateral triangle, d = 2.53 Å All moments set along y axis isoscales triangle µS µL µJ |µ| x y z 0.00 2.19 0.00 2.19 0.00 1.80 0.00 1.80 0.00 3.99 0.00 3.99 ∆Ezy = 7.0 meV µS µL µJ |µ| x y z 0.00 1.74 0.00 1.74 0.00 0.75 0.00 0.75 0.00 2.49 0.00 2.49 ∆Ezy = 2.9 meV Magnetic anisotropy of small transitionmetal clusters µS µL µJ |µ| x y z 0.00 0.20 0.00 0.20 0.00 0.05 0.00 0.05 0.00 0.25 0.00 0.25 ∆Ezy = 13.2 meV Results tetrahedron z k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Ni Pd Pt All moments set along z axis All moments set along z axis All moments set along z axis and [1 1 1] tetrahedron – broken symmetry, S4 tetrahedron – d = 2.61 Å x S 2.20 1.00 1.00 1.00 1.00 2.20 J 0.95 2.20 2.20 0.95 0.50 0.50 0.58 0.58 0.25 0.25 0.52 0.52 0.50 0.50 0.58 0.58 0.75 0.75 0.52 0.52 0.95 0.95 S,L = 18o |µ| x y z 0.00 0.02 3.44 3.44 0.00 0.00 0.36 0.36 0.00 0.02 3.80 3.80 S,L 0 o All moments set along [1 1 1] direction broken symetry, S4 µS µL µJ S,L = 24o |µ| x y z 2.00 2.00 1.96 3.44 0.20 0.20 0.20 0.35 2.20 2.20 2.16 3.79 µS µL µJ |µ| x y z 0.00 0.00 1.84 1.84 0.00 0.00 0.48 0.48 0.00 0.00 2.32 2.32 S,L 0 o All moments set along [1 1 1] direction tetrahedron µS µL µJ |µ| x y z 1.08 1.02 1.06 1.82 0.29 0.29 0.29 0.50 1.37 1.31 1.35 2.32 ∆Ez[1 1 1] = 0.5 meV ∆Ez[1 1 1] = 1.1 meV All moments set along x axis broken symetry, S4 All moments set along x axis tetrahedron µS µL µJ tetrahedron – d = 2.59 Å 2.69 Remaining = 2.32 Å µS µL µJ tetrahedron – broken symmetry, C2 |µ| x y z 3.44 0.00 0.06 3.44 0.32 0.00 0.00 0.32 3.76 0.00 0.06 3.76 ∆Ezx = 1.9 meV µS µL µJ |µ| x y z 1.84 0.00 0.00 1.84 0.48 0.00 0.00 0.48 2.32 0.00 0.00 2.32 ∆Ezx = 0.01 meV Magnetic anisotropy of small transitionmetal clusters S,L = 0o Remaining = 2.58 Å x S1 S2 S3 S4 L1 L2 L3 L4 0.21 y z |m| 0.21 0.21 0.36 0.21 0.21 0.21 0.36 0.21 0.21 0.21 0.21 0.21 0.09 0.21 0.36 0.36 0.09 0.09 0.16 0.09 0.09 0.09 0.16 0.09 0.09 0.09 0.09 0.09 0.09 0.16 0.16 All moments set along x axis broken symetry, S4 µS µL µJ |µ| x y z 2.72 0.00 0.00 2.72 0.96 0.00 0.00 0.96 3.68 0.00 0.00 3.68 ∆Ezx = 24.6 meV Results – trigonal bipyramid k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Ni Pd Pt All moments set along [1 1 1] direction All moments set along z axis All moments set along z or x axis, trigonal bipyramid –D3h S J 0.72 2.33 0.85 0.85 2.25 0.72 0.76 2.33 0.91 S,L = 8o S,L = 6o 0.91 |µ| x y z 2.48 2.86 0.48 3.82 0.29 0.32 0.05 0.43 2.77 3.18 0.53 4.25 All moments set along x axis D3h |µ| x y z 3.82 0.00 0.00 3.82 0.45 0.00 0.00 0.45 4.27 0.00 0.00 4.27 2.58 0.35 2.91 0.47 S,L = 8o S,L 8o µS µL µJ 0.35 µS µL µJ 0.50 S,L = 7o 0.45 0.45 2.89 0.50 S,L = 4o |µ| x y z 0.66 1.69 0.10 1.82 0.21 0.49 0.04 0.53 0.87 2.18 0.06 2.35 S,L 4o All moments set along x axis D3h µS µL µJ |µ| x y z 1.79 0.05 0.05 1.79 0.56 0.00 0.00 0.56 2.35 0.05 0.05 2.35 ∆E[1 1 1]x = 0.5 meV ∆Ezx = 8.1 meV All moments set along Z axis D3h All moments set along [1 1 1] direction D3h µS µL µJ |µ| x y z 0.00 0.00 3.82 3.82 0.00 0.00 0.50 0.50 0.00 0.00 4.32 4.32 ∆Ezx = 1.4 meV µS µL µJ |µ| x y z 0.34 1.79 0.00 1.82 0.10 0.52 0.00 0.53 0.44 2.31 0.00 2.35 ∆E[1 1 1]x = 4.6 meV Magnetic anisotropy of small transitionmetal clusters trigonal bipyramid – D3h S,L = 4o 0.47 2.56 2.26 0.76 z x µS µL µJ trigonal bipyramid – D3h 2.62 2.62 0.47 S,L = 12o 0.42 S,L = 3o 0.35 0.35 2.60 0.47 µS µL µJ 0.95 0.95 2.60 0.42 S,L = 12o |µ| x y z 2.76 0.26 0.00 2.77 0.93 0.07 0.00 0.93 3.69 0.33 0.00 3.70 S,L 8 o All moments set along [1 1 1] direction D3h µS µL µJ |µ| x y z 1.81 2.10 0.04 2.77 0.62 0.71 0.00 0.94 2.43 2.81 0.04 3.71 ∆E[1 1 1]x = 0.2 meV Results – magnetic moment (per atom), average bond length, binding energy Properties of small transition metal clusters – scalarrelativistic vs fully relativistic calc. k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Co and Fe on Pt(111) Scalar relat. ∆E(fcc hcp) = 5 meV ∆d FePt = 0.1 Å Including SOC Perpendicular µL µtot µS µS MFe 3.306 3.282 0.104 3.386 MPt 2.377 2.153 0.402 Meff 5.683 5.435 MCo 2.190 MPt Meff ∆E(hcp fcc) = 28 meV ∆d CoPt = 0.7 Å Adatoms on nonmagnetic substrates Inplane µL µtot ∆E [meV] µS 2.05 3.283 0.108 3.391 2.555 2.172 0.518 2.690 0.506 5.941 5.455 0.626 6.081 2.155 0.126 2.281 2.155 0.088 2.243 4.826 3.319 0.684 4.003 3.325 0.829 4.154 7.016 5.474 0.810 6.284 5.480 0.917 6.397 1.19 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Co and Fe on Pt(111) Scalar relat. MFe Perpendicular µL µtot µS µS 3.306 3.282 3.395 3.366 0.104 0.628 0.343 3.386 4.023 3.709 2.153 0.402 1 ∆E(fcc hcp) = 5 meV ∆d FePt = 0.1 Å Including SOC SKKR LSDA – ideal geometry MPt 2.377 Inplane µL µ tot ∆E [meV] µS 2.05 5.31 2.35 3.283 3.514 3.366 0.108 0.266 0.234 3.391 3.780 2.555 2.172 0.518 2.690 5.455 0.626 6.081 2.155 1.973 2.151 0.088 0.483 0.350 2.243 2.456 2.501 Meff 5.683 5.435 0.506 5.941 MCo 2.190 2.155 2.153 2.152 0.126 0.726 0.631 2.281 2.879 2.783 3.319 0.684 4.003 3.325 0.829 4.154 5.474 0.810 6.284 5.480 0.917 6.397 1 SKKR LSDA – ideal geometry MPt 4.826 Meff 7.016 ∆E(hcp fcc) = 28 meV ∆d CoPt = 0.7 Å 1 C. Etz et al. PRB 77, 184425 (2008). Adatoms on nonmagnetic substrates 1.19 5.02 6.41 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Co and Fe on Pt(111) Scalar relat. MFe µS 3.306 3.282 3.395 3.366 0.104 0.628 0.343 3.386 4.023 3.709 2.153 0.402 SKKR LSDA – ideal geometry MPt 2.377 Inplane µL µtot ∆E [meV] µS 2.05 5.31 2.35 3.283 3.514 3.366 0.108 0.266 0.234 3.391 3.780 2.555 2.172 0.518 2.690 5.455 0.626 6.081 2.155 1.973 2.151 0.088 0.483 0.350 2.243 2.456 2.501 Meff 5.683 5.435 0.506 5.941 MCo 2.190 2.155 2.153 2.152 0.126 0.726 0.631 2.281 2.879 2.783 3.319 1.131 0.684 0.194 4.003 1.325 3.325 1.258 0.829 0.279 4.154 1.537 5.474 0.810 6.284 5.480 0.917 6.397 1 SKKR LSDA – ideal geometry MPt 4.826 LSDA – ideal geometry Meff 7.016 ● ∆E(hcp fcc) = 28 meV ∆d CoPt = 0.7 Å Perpendicular µL µtot µS 1 ∆E(fcc hcp) = 5 meV ∆d FePt = 0.1 Å Including SOC 1.19 5.02 6.41 2Experiment – Fe/Pt – out of plane orientation, L/Seff = 0.18±0.05 Experiment – Co/Pt – out of plane orientation, L/Seff = 0.61±0.05, µPt = 1.8±0.7 ● 1 2 C. Etz et al. PRB 77, 184425 (2008). A. Lehnert, PhD Thesis, Ecole Polytechnique Fédérale de Lausanne (2009). Adatoms on nonmagnetic substrates k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Fe on Pt(111) the lifting of degeneracies of the states (dyz and dxz) far away from the Fermi surface (energy window of –4 ÷ –2 eV) Adatoms on nonmagnetic substrates k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Fe on Pt(111) the lifting of degeneracies of the states (dyz and dxz) far away from the Fermi surface (energy window of –4 ÷ –2 eV) Adatoms on nonmagnetic substrates k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Fe and Co on Rh and Pd (111) Scalar relat. Including SOC Perpendicular µL µ tot µS µS 3.205 3.204 0.083 3.287 MRh 0.191 0.957 0.014 Meff 3.396 4.161 M 2.071 MRh Inplane µL µtot ∆E [meV] µS 0.39 3.203 0.090 3.293 0.943 0.992 0.028 1.020 0.069 4.230 4.195 0.118 4.313 2.155 0.143 2.210 2.064 0.155 2.219 0.814 1.386 0.015 1.401 1.431 0.057 1.488 Meff 2.885 3.453 0.158 3.611 3.495 0.212 3.707 M 3.381 3.375 0.088 3.463 3.376 0.084 3.460 MPd 0.811 0.866 0.054 0.920 0.886 0.085 0.971 Meff 4.192 4.241 0.142 4.383 4.262 0.169 4.431 MCohcphollow 2.249 2.245 0.220 2.465 2.244 0.188 2.432 MPd 0.253 0.282 0.039 0.321 0.250 0.046 0.296 Meff 2.502 1.963 0.181 2.144 1.994 0.142 2.136 M hcphollow Fe hcphollow Co fcchollow Fe Adatoms on nonmagnetic substrates 0.09 1.61 ∆E [meV] 0.19 k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Fe and Co on Rh and Pd (111) Scalar relat. Including SOC Perpendicular µL µ tot µS µS 3.205 3.204 0.083 3.287 MRh 0.191 0.957 0.014 Meff 3.396 4.161 M 2.071 MRh Inplane µL µtot ∆E [meV] µS 0.39 3.203 0.090 3.293 0.943 0.992 0.028 1.020 0.069 4.230 4.195 0.118 4.313 2.155 0.143 2.210 2.064 0.155 2.219 0.814 1.386 0.015 1.401 1.431 0.057 1.488 Meff 2.885 3.453 0.158 3.611 3.495 0.212 3.707 M 3.381 3.375 0.088 3.463 3.376 0.084 3.460 MPd 0.811 0.866 0.054 0.920 0.886 0.085 0.971 Meff 4.192 4.241 0.142 4.383 4.262 0.169 4.431 MCohcphollow 2.249 2.245 0.220 2.465 2.244 0.188 2.432 MPd 0.253 0.282 0.039 0.321 0.250 0.046 0.296 Meff 2.502 1.963 0.181 2.144 1.994 0.142 2.136 M hcphollow Fe hcphollow Co fcchollow Fe 0.09 1.61 ∆E [meV] 0.19 ● Experiment – Fe/Rh – out of plane orientation, L/Seff = 0.15±0.05 ● Experiment – Co/Rh – inplane orientation, L/Seff = 0.57±0.05, µRh = 2.9±0.1, MAE = 0.5 meV ● Experiment – Fe/Pd – out of plane orientation, L/Seff = 0.12±0.05 ● Experiment – Co/Pd – out of plane orientation, L/Seff = 0.70±0.05, MAE = 3 meV Adatoms on nonmagnetic substrates k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Results: Fe and Co on Rh and Pd (111) Scalar relat. Including SOC Perpendicular µL µ tot µS µS 3.205 3.204 0.083 3.287 MRh 0.191 0.957 0.014 Meff 3.396 4.161 M 2.071 MRh Inplane µL µtot ∆E [meV] µS 0.39 3.203 0.090 3.293 0.943 0.992 0.028 1.020 0.069 4.230 4.195 0.118 4.313 2.155 0.143 2.210 2.064 0.155 2.219 0.814 1.386 0.015 1.401 1.431 0.057 1.488 Meff 2.885 3.453 0.158 3.611 3.495 0.212 3.707 M 3.381 3.375 0.088 3.463 3.376 0.084 3.460 MPd 0.811 0.866 0.054 0.920 0.886 0.085 0.971 Meff 4.192 4.241 0.142 4.383 4.262 0.169 4.431 M 2.249 2.245 0.220 2.465 2.244 0.188 2.432 MPd 0.253 0.282 0.039 0.321 0.250 0.046 0.296 Meff 2.502 1.963 0.181 2.144 1.994 0.142 2.136 M 3.388 3.377 0.080 3.457 3.382 0.078 3.460 MPd 0.528 9.341 0.994 10.335 5.532 0.611 6.143 Meff 2.860 12.718 1.074 13.792 8.914 0.718 9.632 M hcphollow Fe hcphollow Co fcchollow Fe hcphollow Co hcphollow Fe 0.09 1.61 ∆E [meV] 0.19 39 ● Experiment – Fe/Rh – out of plane orientation, L/Seff = 0.15±0.05 ● Experiment – Co/Rh – inplane orientation, L/Seff = 0.57±0.05, µRh = 2.9±0.1, MAE = 0.5 meV ● Experiment – Fe/Pd – out of plane orientation, L/Seff = 0.12±0.05 ● Experiment – Co/Pd – out of plane orientation, L/Seff = 0.70±0.05, MAE = 3 meV Adatoms on nonmagnetic substrates k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 ➢ Slab thickness – nonmagnetic ground state of the bare surfaces ➢ ➢ Magnetostructural effect – relaxations and height of the adatom above the surface ➢ Exc – LDA or GGA? ➢ Dependence of the magnetic anisotropy on the adsorption sites ➢ ... Adatoms on nonmagnetic substrates k Workshop on Magnetism in Complex Systems, Wien, 1619.04.2009 Thank you for your attention! Adatoms on nonmagnetic substrates
© Copyright 2026 Paperzz