Definite Integration with u-Substitution - Classwork When you have to find a definite integral involving u-substitution, it is often convenient to determine the limits of integration in terms of the variable u, rather than having to integrate and switch back to x and then substitute. This is called “changing the limits.” 2 2 ! x( x + 1) dx 2 Example 1) Start off by finding u ___________ x = 2, u = _________ 0 2 2 1 du = ________ Do we have it? x = 0, u = _________ 2 x x 2 + 1 dx 2 0 Now write everything in terms of u and calculate. It is no longer necessary to switch back to x. ! ( ) 1 Example 2) 5 !x 2 1 " x dx Example 3) 0 # Example 4) 0 sin 2 x dx Example 5) 0 ! 0 x +4 dx ! sin x cos x dx 0 #6 Example 6) x 2 # 2 4 ! ! 2 (1 + sin x cos x ) dx MasterMathMentor.com Example 7) ! 1 " x 2 dx "2 - 157 - Stu Schwartz Definite Integration with u-Substitution - Homework Find the values of the following definite integrals. Verify using your calculator. Some will use u-substitution, others will not. 4 2 ! ( x " 1) dx 3 1. 2. "2 1 ! (1 " cos 2 x ) dx 5. 5 ) 3. ! 8. 2 + 1 dx 3 6. ! 0 dt 3 ! x " x dx 9. 2t + 1 MasterMathMentor.com ! 2 9 " x 2 dx x ( ) x2 " 3 2 dx #2 #2 11. !x 0 0 4 ! sin(2 x ) dx 0 4 x " 4 dx 0 10. ! 2 x( x 2 0 0 7. ) x " 1 dx 0 # 12 4. ! x( #3 ! cos t sin t dt 3 0 - 158 - 12. ! t sin(# " t ) dt 2 0 Stu Schwartz #2 ! t sin(# " t ) dt 13. 14. 0 ! 0 f ( x) dx = 11 and 3 17. ! "2 ! 0 f ( x) dx = ! "2 ! 2 f ( x) dx 21. ! 0 dx (Be careful!) 6 0 " f ( x) dx 22. ! "2 3 f ( x) dx 23. ! f (3x ) dx 0 6 ! f ( x ) dx = 15 , f ( x) is an odd function (symmetric to the origin), find the following: 0 2 MasterMathMentor.com 2 "4 0 "2 f ( x) dx ! x1 ! f ( x ) dx = 15 , f ( x) is an even function (symmetric to the y - axis), find the following: 0 24. 18. 6 20. 11 and 3 ax 2 + b dx 4 9 " x 2 dx 2 f ( x) dx 2 If ! !x 0 0 0 19. 15. 1 " cos x dx 4 sin x !2 x dx # 4 2 If ! cos x 2 0 #2 16. 1 # 3 2 25. ! "2 2 f ( x) dx 26. ! 0 2 0 " f ( x) dx - 159 - 27. ! "2 3 f ( x) dx 28. ! f (3x ) dx 0 Stu Schwartz
© Copyright 2026 Paperzz