Math 1330 Section 5.4 Section 5.4: Inverse Trigonometric Functions Here is the graph of f (x ) sin( x ) on the interval [2 ,2 ] . Sin(x) is not a one-to one function. Restricted Sine Function y x To get around this, we begin to limit the domain of each of the trig functions, so that over the restricted domain, the function is one-to-one. “Restricted” sine function: Inverse sine function: f ( x) sin 1 x or f ( x) arcsin x 1 2 -1 2 Domain: ________________ Domain: _________________ Range: _ _________________ Range: __________________ sin sin 1 x x when x is in the interval ________________. sin 1 sin x x when x is in the interval ________________. Math 1330 Section 5.4 We have the same situation with cosine and tangent. We must restrict the domains in order to get inverses. Restricted”cosine function: Inverse cosine function: f ( x) cos 1 x or f ( x) arccos x 1 -1 Domain:_________________ Domain:_________________ Range:__________________ Range:__________________ cos cos1 x x when x is in the interval ________________. cos1 cos x x when x is in the interval ________________. Example 1: 3 Evaluate cos 1 . 2 Math 1330 Section 5.4 “Restricted” tangent function: Inverse tangent function: f ( x) tan 1 x or f ( x) arctan x 1 2 -1 2 Domain:_________________ Domain:_________________ Range:__________________ Range:__________________ tan tan 1 x x when x is in the interval ________________. tan 1 tan x x when x is in the interval ________________. Example 2: Evaluate arctan(1) . 2 Example 3: Evaluate sin 1 . 2 Math 1330 Section 5.4 Here is a summary of properties that maybe helpful when evaluating inverse trig function: sin(sin 1 (x )) x 1 cos(cos (x )) x tan(tan 1 (x )) x on 1,1 on 1,1 on , cos 1 (cos( x )) x on , 2 2 on 0, tan 1 (tan(x )) x on sin 1 (sin( x )) x , 2 2 Notation: sin 1 (x ) arcsin( x ) . This is true for all trig functions. The arc in front of the trig function is the older notation but you will see both notations and need to know their meanings. 3 Example 4: Evaluate sin 1 . 2 Example 5: Evaluate tan 1 0 . 2 Example 6: Evaluate arccos . 2 1 Example 7: Evaluate sin 1 . 2 Math 1330 Section 5.4 1 Example 8: Evaluate tan 1 . 3 Example 9: Evaluate sin 1 . Example 10: Evaluate cosarccos( 2) . 4 Example 11: Evaluate sin sin 1 7 1 Example 12: Evaluate tan sin 1 . 2 2 Example 13: Evaluate cos sin 1 . 7
© Copyright 2025 Paperzz