Revista Brasileira de Física, Vol. 10, NP 1, 1980 The Green's Function for Jacobi Special Functions J. BELLANDI FILHO and E. CAPELAS DE OLIVEIRA* Instituto de Física, Universidade Estadual de Campinas, 13160 Campinas, SP. Recebido em 4 de Outubro de 1979 The Green's f u n c t i o n f o r the Jacobi d i f f e r e n t i a l equation As by -product i s c a l c u l a t e d hy means o f t h e S t u r m - L i o u v i l l e method. we o b t a i n Legendre, Gegenbauer and Tchebichef Green's f u n c t i o n s . Calcula- se a função de Green para a equação d i f e r e n c i a l de Jacobi p e l o método de S t u r m - L i o u v i l l e . Como casos p a r t i c u l a r e s obtém-se também as funções de Green para as equações d i f e r e n c i a i s de Le- gendre, Gegenbauer e Tchebichef. 1. INTRODUCTION The present paper contains a sistematic calculation o f t h e S t u r m - L i o u v i l l e expansion o f the Green's f u n c t i o n f o r the d i f f e r e n t i a l equation f o r a number o f special f u n c t i o n s ; a common f e a t u r e f o r a11 o f them i s t h a t the corresponding d i f f e r e n t i a l be d e r i v e from the Jacobi o r hypergeometric equation can d i f f e r e n t i a l equatiori. These i n c l u d e Legendre, Gegenbauer and Tchebichef f u n c t i o n s . I n the f i r s t s e c t i o n we c a l c u l a t e the Green's f u n c t i o n s f o r the Jacobi d i f f e r e n t i a l equation by the Sturm-Liouvi I l e methodand f o r d e f i n e general s p h e r i c a l harmonics i n o r d e r t o simpl i f y t h e ex- pression f o r the Green's f u n c t i o n . I n the second s e c t i o n we d e r i v e f rom the Jacobi Green's f u n c t i o n p a r t i c u l a r cases, as Legendre, Gegenbauer and Tchebichef Green's f u n c t i o n , and i n the t h i r d s e c t i o n we present our discussions. * With a FAPESP - São Paulo - B r a s i l - Fel lowship 2. JACOBI GREEN'S FUNCTION The Jacobi d i f f e r e n t i a 1 operatorl can be w r i t t e n in the f o l l o w i n g way where the convenient choice o f combinations @+aand 6-a f o r t e r s o f t h e d i f f e r e n t i a l o p e r a t o r i s o n l y introduced parame- t o simplify the notation. I n o r d e r t o c a l c u l a t e the Green's f u n c t i o n we f i r s t take ~ , derive the o u t the weight f u n c t i o n s ( l - ~ ) ~ ( l + x )and Green's func- t i o n f o r the f o l l o w i n g d i f f e r e n t i a l operator where n = v-a-6. The Green's f u n c t i o n f o r t h i s d i f f e r e n t i a l o p e r a t o r s a t i s f i e s the f o l l o w i n g inhomogeneous d i f f e r e n t i a l equation which i s bounded on O 2 x < m; here a 7 - 1 and 6 > - 1 i n o r d e r t o ma- ke the weight f u n c t i o n non-negative and i n t e g r a b l e , b u t the formal relations are v a l i d without t h i s r e s t r i c t i o n . The Sturm-Liouvi ll e method2 c o n s i s t s t o w r i t e the Green's f u n c t i o n as the product o f two l i n e a r l y independent s o l u t i o n s o f the corresponding homogeneous d i f f e r e n t i a l equation, L X J , = O . These so- l u t i o n s f o r the Jacobi 'operator a r e P ( 2 a s 2 6 ) ( x ), r e g u l a r a t the o r i - n gen and Qn ( 2 a s 2 6 ) ( z ) , r e g u l a r a t the i n f i n i t y . The s o l u t i o n o f Eq. 3 i s (2a,2f3) (x<) Qn where (x<) x< and x> a r e the l e s s e r and g r e a t e r o f x and x ' r e s p e c t i v e l y . The Green's f u n c t i o n f o r t h e LT, o p e r a t o r i s e a s i l y o b t a i d ned, i n c o r p o r a t i n g t h e weight f u n c t i o n i n Eq. 4, and w r i t i n g m v - a - 0 We simpl i f y t h i s expression, i n t r o d u c i ng general spheri - c a l harmonics, as used by V i l e n k i n 3 t o analyse representations o f t h e group Q U ( ~ )o f u n i -modular quasi - uni t a r y rnatrices of the second ordei-. These f u n c t i o n s a r e s o l u t i o n s o f t h e homogeneous d i f f e r e n t i a l equation f o r the L o p e r a t o r and a r e d e f i n e d i n terms o f Jacobi f u n c t i o n by x where we have used the M i l l e r ' s n o r m a l i z a t i o n 4 . The Green's f o r t h e L o p e r a t o r i n terms of general s p h e r i c a l harrnonics x 3. PARTICULAR CASES a) Legendre Green's function The Green's f u n c t i o n f o r t h e associa ted Legendre di f f e- r e n t i a l equation can be d e r i v e d from the Jacobi Green's f u n c t i o n í f w e p u t i n Eq. 8 a=b=m/2. Relations between Jacobi and Legendre functions can be e a s i l y obtained, expanding Jacobi f u n c t i o n s i n terms of hypergeometric functionsl. These r e l a t i o n s a r e and the r e l a t i o n s w i t h general s p h e r i c a l harmonics a r e The associated Legendre Green's f u n c t i o n i s t h a t i s the same as c a l c u l a t e d by means o f the i s o t r o p i c harmonic osc i l l a t o r Green's f u n c t i o n 5 . T h i s r e s u l t can be a l s o obtained, apply d i r e c t l y the Sturm-Liouvi 1 l e method t o the Legendre d i f f e r e n t i a l equation, because c &V and if we associated a r e two 1 i n e a r l y indepen- dent s o l u t i o n s o f the homogeneous d i f f e r e n t i a l equation, regular at the o r i g i n and a t the i n f i n i t y r e s p e c t i v e l y . bl Gegenbauer Green's function Gegenbauer f u n c t i o n s l a r e constant mul t i p l ies functions w i t h a+B = X-1/2 and B-u=O, w i t h X 7 of Jacobi -1/2 i n o r d e r t o have a r e a l and i n t e g r a b l e w e i g h t f u n c t i o n s . Relations s p h e r i c a l harmonics and Gegenbauer f u n c t i o n s can be u s i n g r e l a t i o n s between Gegenbauer and Legendre between general easi l y o b t a i n e d functionsl and are B where c B ( x ) and Da(x) a r e t h e f i r s t and second Gegenbauer f u n c t i o n r a r e s p e c t i v e l y The Gegenbauer Green's f u n c t i o n i s . C) Tchebichef Green's function There a r e two s p e c i a l mul t í p l e s o f Jacobi f u n c t i o n s ; ~ c h e b i c h e f lf u n c t i o n s which a r e one w i t h 6-a=O, a+B=-1/2 k i n d T ( x ) f u n c t i o n and o t h e r w i t h B-a=O, n k i n d U (x) function. n a+B= +1/2 for f o r the f i r s t the For t h e f i r s t k i n d f u n c t i o n we have one r e l a t i o n yn(x) and e " ) second between (x) and t h e r e l a t i o n w i t h t h e f i r s t g e n e r a l s p h e r i c a l harmonic i s The second s o l u t i o n f o r t h e f i r s t k. i n d f u n c t i o n def i n e d i n terms o f t h e Q ( - 1 / 2 , - 1 / 2 ) ( x ) , v+1/2 can be expand i n g i n terms o f hyper- geometric functionsl. I f we c a l 1 Vv+1/2(x) (-112,-1/21 is lation w i t h where Vv+,,2(x) the second s o l u t i o n there- i n terms o f hypergeometric f u n c t i o n s i s g i v e n by The general ' s p h e r i c a l harmonic i n terms Vue1/2(d i s The Green's f u n c t i o n f o r t h e f i r s t k i n d Tchebichef func- tion is For t h e second k i n d U ( x ) , we can d e r i v e the r e l a t i o n b e t - n ween general s p h e r i c a l harmonics and Tchebichef f u n c t i o n s i n comple- t e l y analogy w i t h t h e f i r s t k i n d case where X ~ - ~ , ~ ( X i)s the second s o l u t i o n and i n terms t r i c functions we have of hypergeome- and t h e Green's f u n c t i o n f o r t h e second k i n d f u n c t i o n i s G ( x , x ~ ) = (s2-1)1/4 ( ~ ~ ~I/4 - u1 v )- 1 ~ 2 ( x < ~ x v - 1 ~ 2 ( x , ) . (26) 4. DISCUSSIONS We have p r e s e n t e d a g l o b a l d e r i v a r i o n t i o n , bounded on t h e domain O f x < m, for o f t h e Green's f u n c - a number o f s p e c i a l f u n c - t i o n s a r e a l s o bounded i n t h e domain -1 f x $ 1, w i t h t h e t h a t v rnust be an e n t i r e number, restriction i n o r d e r t o have polynornial s o l u t i o n s f o r t h e c o r r e s p o n d i ng homogeneous d i f f e r e n t i a 1 e q u a t i o n . There a r e many problems i n p h y s i c s , where these d i f f e r e n t i a 1 e q u a t i o n s appear. One example, i s t h e quanturn mechanics Coulombproblem, i n t h e momentum space, where t h e c o r r e s p o n d i n g r a d i a l equation i s a Gegnebauer d i f f e r e n t i a 1 equat ion 6 , wh i ch g i v e s t h e e x p r e s s i o n of the r a d i a l Coulomb Green's f u n c t i o n i n terms o f t h e p r o d u c t o f two independ e n t Gegenbauer f u n c t i o n s . The quantum mechanics symmetric top 7 , where we have a Jacobi d i f f e r e n t i a l e q u a t i o n . i s another exampl e , I f we w r i t e t i a 1 e q u a t i o n i n E u l e r ' s angles, 0, $ and J, and s e p a r a t e the d i f f e r e n t i a l equation i n the the differenthe variables, 0 v a r i a b l e i s a Jacobi d i f f e r e n t i a l e- q u a t i o n , and t h e Green's f u n c t i o n i s g i v i n g i n terms o f t h e g e n e r a l spher i c a 1 harrnonics b E q . (8) , bounded i n t h e domai n -1 5 x 5 1 . This equation i s a l s o the d i f f e r e n t i a l equation f o r irreduc i b l e r e p r e s e n t a t ons o f t h e r o t a t i o n group8, and general s p h e r i c a l h a r monics a r e t h e so u t i o n s o f t h i s d i f f e r e n t i a l e q u a t i o n -I . ? x $ 1. in t h e domain I t i s i n t e r e s t i n g t o n o t e t h a t t h e s e Green's f u n c t i o n s h e r e c a l c u l a t e d can be also d e r i v e d by means o f t h e harmonic o s c i ll a t o r Green's f u n c t i o n i n t h e momentum space, and as a b y - p r o d u c t we can d e r i v e d i n t e g r a l r e p r e s e n t a t i o n s f o r t h e Green's f u n c t i o n s and some a d d i t i o n s t h e o renis f o r t h e g e n e r a l s p h e r i c a l harmonics. These c a l c u l a t i o n s are object o f another p u b l i c a t i o n . REFERENCES 1 . E r d ê l y i , A. , H i g h e r TranscendentaZ Functions,Voi . l ,2 (New York -McGraw - ~ i l l )(1953). 2 . Arf ken, G., M a t h e ~ t i c a zMethods f o r P h y s i c i s t s , a t i o n 2-, (1970). Acaderni C Press - Edi - . 3 . V i 1enk i n, N .J , speciaZ F u n c t i o n a n d t h e Theory of Group Representations - American Mathematical S o c i e t y , ( 1 9 6 8 ) . 4 . W i l l a r d M i l l e r , Jr., L i e T h e o q a n d SpeciaZ Functions, Academic Press I n r . (1968). 5 . J . B e l l a n d i F? and E . Capelas de O l i v e i r a , The Green's F u n c t i o n f o r t h e Associated Legendre D i f f e r e n t i a l Equation, R e v i s t a B r a s i l e i r a de F í s i c a , V o l . 9, n? 3 (1979). 6 . E.A. H y l l e r a a s 2 . f u r Physik, 75, 216 (1932). 7. L . Landau and E. L i f c h i t z , ~ é c a n i ~ uQwzntique e ( ~ dt iio n s M i r - 1966) pg. 449. 8. J .D. Ta 1man Benjamin, Inc. . S p e d a Z h n c t i o n s - A Group T h e o r e t i c - 1968) pg. 151. Approach - ( W .A.
© Copyright 2026 Paperzz