Math 11B Spring 2008 Handout #11 Copyright by Hongyun Wang, UCSC How to calculate P( x) Q( x ) dx ? Q( x ) = x + b Case 1: Long division: r P( x) = R( x ) + x+b x +b P ( x) x + b dx = R ( x ) dx + r log x + b + c Q( x ) = x 2 + bx + c Case 2: Long division: rx + s P( x) = R( x ) + 2 x + bx + c x + bx + c 2 x 2 P ( x) rx + s dx = R ( x ) dx + 2 dx + bx + c x + bx + c Therefore, we only need to find how to calculate x 2 Case 2A: b 4c > 0 Factor Q( x ) Step 1: x 2 + bx + c = ( x x1 ) ( x x2 ) Step 2: Partial fraction decomposition: A B rx + s = + ( x x1)( x x 2) ( x x1) ( x x 2) x 2 rx + s 1 1 dx = A dx + B dx + bx + c ( x x1 ) ( x x2 ) = A log x x1 + B log x x2 + c -1- 2 rx + s dx . + bx + c Math 11B 2 Case 2B: b 4c = 0 Factor Q( x ) Step 1: x 2 + bx + c = ( x x1 ) Step 2: Partial fraction decomposition: rx + s ( x x1 ) x 2 2 2 = A B + ( x x1 ) ( x x1 )2 rx + s 1 1 dx = A dx + B dx + bx + c ( x x1 ) ( x x1 )2 = A log x x1 B 1 +c x x2 2 Case 2C: b 4c < 0 Step 1: Complete the square b 4c b 2 x + bx + c = x + + 4 2 2 2 2 b = x + +2 , 2 Step 2: Use substitution u = x + rx + s 2 b x + + 2 2 = 4c b 2 4 b 2 b rb r u + s ru + s 2 2 dx = du = du 2 2 2 2 u + u + 2 = r = 1 u rb du + s 2 du 2 u + 2 u +2 2 ( r log u 2 + 2 2 ) rb s 2 u + tan 1 + c -2- Math 11B rb b s 2 x + r b 2 2 +c = log x + + 2 + tan 1 2 2 Here we have used integration formulas: x x 2 2 1 x 2 2 log( x + ) + c 2 dx = 2 + 1 1 1 x tan 2 dx = + c + -3-
© Copyright 2025 Paperzz