Dynamics of multiple system Pluto V. Troianskyi, O. Bazyey, V. Zhukov Kolos, December 01 – 03, 2016 Research Objectives Consider the evolution of the orbits of satellites Pluto. Search secular perturbations. Search resonances. 2 System (134340) Pluto. Photo Space Telescope Hubble http://hubblesite.org/newscenter/archive/releases/2012/19 3 System (134340) Pluto. Photo spacecraft "New Horizons" https://www.nasa.gov/sites/default/files 4 Our orbital model is a Numerical integration of the equations of motion – method Everhart’s 15th (Bazyey and Kara 2009). JPL planetary ephemeris DE431 (Folkner et al., 2014). Dynamical constants system, GM: Jovian (Folkner et al. 2014), Saturnian (Jacobson 2006), Uranian (Jacobson et al. 1992), Neptunian (Jacobson 2009), Sun and inner planets and the Moon (Folkner et al. 2014). Pluto system, GM (Brozovic et al. 2015). State vectors for the satellites of Pluto (Brozovic et al. 2015). 5 Charon. Photo spacecraft "New Horizons" https://www.nasa.gov/sites/default/files 6 Evolution selected Keplerian orbital elements of the orbit of satellite Charon a (km.) 19 596,64 19 596,63 19 596,62 19 596,61 19 596,60 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0,000058 0,000057 e 0,000056 0,000055 0,000054 i (degrees) 0,000053 96,23352 96,23351 96,23350 96,23349 96,23348 96,23347 96,23346 96,23345 96,23344 Time (years) 7 Evolution selected Keplerian orbital elements of the orbit of satellite Charon 223,02711 223,02709 223,02708 223,02707 223,02706 223,02705 223,02704 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 356 355 354 ω (degrees) Ω (degrees) 223,02710 353 352 351 350 349 348 347 Time (years) 8 An oblique view of the Pluto–Charon system showing that Pluto orbits a point outside itself. Also visible is the mutual tidal locking between the two bodies. 9 Charon and the Small Moons of Pluto. Photo spacecraft "New Horizons" https://www.nasa.gov/sites/default/files 10 Evolution Inclination orbits of satellites Styx and Nix 96,30 96,25 i (degrees) 96,20 96,15 96,10 96,05 96,00 95,95 95,90 95,85 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 96,25 i (degrees) 96,20 96,15 96,10 96,05 96,00 95,95 Time (years) 11 i (degrees) Evolution Inclination orbits of satellites Kerberos and Hydra 96,30 96,25 96,20 96,15 96,10 96,05 96,00 95,95 95,90 95,85 95,80 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 96,20 i (degrees) 96,15 96,10 96,05 96,00 95,95 95,90 Time (years) 12 Resonance of Pluto's satellites The resonance is described by formula (Murray and Dermot 2010): N1 P1 N 2 P2 Ni Pi 0, i 1 n, where N1, N2, ..., Ni – resonance coefficients, P1, P2, ..., Pi – periods/spins Lee and Peale (2006) found that Nix and Hydra could be in the 3:2 mean-motion resonance. Together with Nix and Hydra, Styx and Kerberos complete the continuous sequence of near-resonant orbits (1:3:4:5:6) with respect to Pluto–Charon orbital period (Brozovic et al. 2015). 13 Resonance of Pluto's satellites Orbital-orbitals resonance: 11 PCharon 10 PStyx 16 PHydra 20 PNix 12 PKerberos 0.00 hour Spin-orbital resonance: 6 S Pluto 1 PHydra 2.9175 hour 5 S Pluto 1 PKerberos 5.565 hour 4 S Pluto 1 PNix 16.6634 hour 19 S Pluto 6 PStyx 9.248 hour 1 S Pluto 1 PCharon 0.00000 hour 14 Results We was built plutonocentrical and barycentrical numerical model of Pluto’s system. We was find secular perturbations in Pluto’s satellites orbital elements. We was calculated orbital-orbital and one of spin orbital resonances in Pluto’s system. 15 Thanks for attention !!! Volodymyr Troianskyi [email protected]
© Copyright 2026 Paperzz