Welcome Back Review (Solutions) Math 1B 1. d ⎡ 3 2 ⎤ = 3x 2 − 6x x − 3x + 1 ⎦ dx ⎣ 2. d d d 2sin x cos x ] = 2sin x ⋅ [cos x] + 2 [sin x]⋅ cos x [ dx dx dx = −2sin 2 x + 2 cos2 x = 2(cos2 x − sin 2 x) OR d d 2sin x cos x ] = [sin 2x] [ dx dx = cos 2x ⋅ d [2x] dx = 2 cos 2x 3. d ⎡ ln dx ⎣ ( ) 1 d 12 sec x ⎤ = ⋅ ⎡( sec x ) ⎤ ⎦ ⎣ ⎦ sec x dx = 1 1 −1 2 d ⋅ ( sec x ) ⋅ [sec x] dx sec x 2 = 1 ⋅sec x ⋅ tan x 2sec x = tan x 2 4. 3x 3 6x 2 3 2 ∫ (3x − 6x) dx = 3 − 2 + C = x − 3x + C 5. ∫ cos x e 2 sin x = ∫ cos x ⋅ eu dx du cos x = ∫ eu du = eu + C = esin x + C 6. 1 −1 ∫ 1+ x 2 dx = tan x + C Let u = sin x Then du = cos x dx and dx = du cos x
© Copyright 2026 Paperzz