MTH 124 FS15 Derivative Worksheet Name: The purpose of this worksheet is to provide an opportunity to practice differentiation formulas. It will not be graded and you are not expected to finish in class. Exercises (1) f (x) = x2 + 2x + 1 (14) t(x) = ln(x2 + 3x)ex (2) g(x) = 3xex (15) n(x) = (3) h(x) = ln(x2 + x) (16) a(t) = t(t3 + t + et ) (4) t(x) = 3x3 e7 (17) f (u) = (5) n(x) = x+1 x−1 (18) g(x) = 2 −x 1 ln x+x e7 +ln 2+1 u √ −1 x3 + 2x + 1 2 (6) a(t) = tet (7) f (u) = u2 ln(1+eu ) (8) g(x) = e (9) h(y) = (10) s(t) = (19) h(y) = e5y + ln(2y) + √ 4 3x4 +3x2 +1 1 (7y)2 (5x3 +2x2 +2) ln(x) e3x +x (20) s(t) = 15 y t3 +7t+1 t (21) f (x) = ln(ex (x2 + 1)) (22) g(x) = e(x 2 +3)7 (x−1)5 (23) h(x) = ln x − ln( x1 ) √ (11) f (x) = (x2 + x)100 (24) t(x) = y(2x − (12) g(x) = (3x2 + x + 1)ex ln x (25) n(x) = (x + 1)4 (x − 1)4 x3 (13) h(x) = (x2 +x+1)(4x ) x ln x 2 (26) a(t) ett2−1 −1 5) 2 u4 ln(1+eu ) (29) h(y) = |y 2 | q (30) s(t) = (27) f (u) = (28) g(x) = x2 +x ln x+1 formulas (1) d c dx (2) d n x dx = nxn−1 (3) d x e dx = ex (4) d x a dx = ax ln(a) (5) d dx (6) d [cf (x)] dx (7) d [(f (x) dx (8) d [(f (x)g(x)] dx (9) d f (x) [ ] dx g(x) (10) =0 ln(x) = d [f dx 1 x = cf 0 (x) ± g(x)] = f 0 (x) ± g 0 (x) = = f 0 (x)g(x) + f (x)g 0 (x) f 0 (x)g(x)−f (x)g 0 (x) (g(x))2 ◦ g(x)] = d f (g(x)] dx = f 0 (g(x))g 0 (x) 1 |t|
© Copyright 2026 Paperzz