INDUCTIVE REASONING IN MATHEMATICS F. M a l l o y Brown Department o f A r t i f i c i a l I n t e l l i g e n c e U n i v e r s i t y o f Edinburgh Scotland a: Sten-Ake T a r n l u n d Dept. of I n f o r m a t i o n P r o c e s s i n g & Computer Science U n i v e r s i t y o f Stockholm, Royal I n s t i t u t e o f Technology, Sweden. Abstract We i n v e s t i g a t e s e v e r a l methods of i n d u c t i v e r e a s o n i n g i n the domain o f d i f f e r e n c e e q u a t i o n s , i n c l u d i n g the method o f g e n e r a l i z a t i o n w i t h b e l i e f s , t h e method of successive r e f i n e m e n t , and temporal methods based on comparisons w i t h p r e v i o u s l y s o l v e d problems. 1. Introduction We b e g i n a study of i n d u c t i v e reasoning in mathematics. I n d u c t i v e r e a s o n i n g i n mathematics d i f f e r s from i n d u c t i v e r e a s o n i n g i n the e m p i r i c a l sciences i n t h a t t h e r e i s a n u l t i m a t e t e s t a l t h o u g h n o t n e c e s s a r i l y a d e c i s i o n p r o c e d u r e , which can be used t o determine what i s a c o r r e c t i n d u c t i o n . Namely, t h a t i f what i s induced i s t r u e , t h a t i s : i f i t can b e deduced b y o n e ' s d e d u c t i v e system then i t must b e c o r r e c t . Because o f t h i s r e l a t i o n s h i p between i n d u c t i o n and d e d u c t i o n one of our g o a l s i s t o c l a s s i f y what i n s t a n c e s o f r e a s o n i n g are i n d u c t i v e and what are d e d u c t i v e . Our main g o a l however, is to c r e a t e a taxonomy o f f e a s i b l e i n d u c t i v e methods. Such a g o a l i s n o t u n r e l a t e d to t h e work of the m a t h e m a t i c i a n : G. Polya, [1967, 1968A, 1968B], i t i s j u s t more d e t a i l e d . In p a r t i c u l a r , w e t r y t o c a r r y o u t the a n a l y s i s o f each method to a l e v e l d e t a i l e d enough so as to be programmed. A l s o , where necessary, we r e l a t e the i n d u c t i v e methods t o the l e v e l and c a p a b i l i t i e s o f contemporary d e d u c t i v e systems. Due t o t h i s r e quirement f o r d e t a i l w e s h a l l r e s t r i c t our a t t e n t i o n t o a p a r t i c u l a r , b u t s i g n i f i c a n t domain. 1.1 Our Problem Domain We c o n s i d e r t h e problem of t r y i n g to f i n d by i n d u c t i v e reasoning a closed-form s o l u t i o n , t h a t is an algebraic s o l u t i o n , to a recursive f u n c t i o n . That i s , from a s e t K o f equations o f t h e f o r m * : ψ k ( n , f n , f (n-h) ,f (n-2h) . . .) =0 or r a t h e r : fn = ψk ( n , f ( n - h ) , f ( n - 2 h ) , . . . ) we w i s h to f i n d an e q u a t i o n of t h e f o r m : Vn fn - øn where f does n o t occur in ø. For example, g i v e n the r e c u r s i v e e q u a t i o n f o r the F i b o n a c c i f u n c t i o n : F(n+2) = F(n+1)+Fn Fl = 1 Fo = 0 We would l i k e to f i n d a theorem of the f o r m : Vn Fn = øm where øn is a sentence c o n s t r u c t e d from a l g e b r a i c symbols such as numerals, p l u s ( + ) , times ( * ) , power ( ) , minus ( - ) , d i v i s i o n ( / ) , l o g a r i t h m ( I n ) , * Our c o n v e n t i o n expressions i s t o fore the f u n c t i o n Thus we w r i t e (F (a) + ( b ) . f o r p a r e n t h e s i z i n g complex sub place the l e f t parenthesis be symbol as is done in EVAL-LISP. n) and (a + b) n o t F(n) and Socialized s i n e ( s i n ) and c o s i n e ( c o s ) . Or as another example, g i v e n t h e r e c u r s i v e e q u a t i o n s f o r the minimum number of moves t h a t must be made in the Tower of Hanoi p u z z l e of n d i s c s (a d e s c r i p t i o n of t h i s p u z z l e may be found in Luger [19761.) H(n+1) = 2 ( H n ) + l HO = 0 we would l i k e to f i n d a c l o s e d form s o l u t i o n : Vn Hn = øn. 1.2 A d e f i n i t i o n of " I n d u c t i v e Reasoning" O f course i f we, o r r a t h e r our program a l ready "knew" a c l o s e d form s o l u t i o n øn f o r a r e c u r s i v e f u n c t i o n such as F or H then we would n o t want to c a l l t h e method by which t h a t øn was p r o duced: "inductive reasoning". The problem then o f d e f i n i n g j u s t which methods o f p r o d u c i n g ø n are examples of i n d u c t i v e r e a s o n i n g , and which are n o t - r e s i d e s i n t h e q u e s t i o n a s t o what i t means f o r a system to "know" something. For example if the system had; Vn Hn = øn e x p l i c i t l y s t o r e d as an axiom we would c l e a r l y say t h a t the system knew t h a t Vn Hn = øn. F u r t h e r more, if the system c o u l d apply a sequence of items ( i . e . axioms, lemmas, axiom schemas and lemma schemas, w r i t t e n say in LISP) which t r a n s f o r m e d Hn i n t o ø n , then i f the system knew t h a t each a p p l i c a t i o n of an i t e m in t h a t sequence produced a c o r r e c t r e s u l t , t h e n again we would say t h a t the system knew t h a t (Vn Hn = øn) . So f a r t h i s is an omnipotent sense of knowledge: We know whatever is d e d u c i b l e . We would l i k e to modify i t b y t h e f u r t h e r r e q u i r e m e n t o f f e a s i b i l i t y . That i s , any sequence o f a p p l i c a t i o n o f items must n o t be so l o n g as to exhaust the system's resources o r our p a t i e n c e . I n regard t o f e a s i b i l i t y , i t i s p o i n t e d o u t t h a t w e d o n ' t s t r i c t l y speaking have t o "know" t h a t each a p p l i c a t i o n o f a n i t e m i s c o r r e c t , ( f o r a f t e r a l l , p r o o f s from axioms o n l y are v e r y l o n g ) , b u t r a t h e r a l l t h a t i s needed i s the p o s s i b i l i t y o f "knowing" t h a t our items are c o r r e c t in the sense of an e x t e n s i b l e d e d u c t i v e system (Brown [ 1 9 7 6 A ] ) , coupled w i t h t h e " b e l i e f " * t h a t our items are c o r r e c t i n a t l e a s t t h e sense o f never h a v i n g been r e f u t e d ( i . e . shown t o b e i n c o r r e c t ) (Popper[1968]) . In summary then we w i l l c a l l any method of p r o d u c i n g a c l o s e d - f o r m s o l u t i o n øn, which is n o t "known" t o b e the c l o s e d - f o r m s o l u t i o n , i n d u c t i v e reasoning. For example, enumeration o f a l l p o s s i b l e a l g e b r a i c f u n c t i o n s o r random guessing would count a s i n d u c t i v e reasoning ( a l b e i t poor i n d u c t i v e * We speak of "knowledge" as t r u e " b e l i e f " . The p o i n t i s t h a t a l t h o u g h w e hope t h a t our d e d u c t i v e system is sound, t h e r e does n o t seem to be anyway t o a b s o l u t e l y guarantee t h i s f a c t . S stems-4: 8 4 Brown reasoning) because as items of a d e d u c t i v e system they would q u i c k l y b e r e f u t e d b y p r o d u c i n g f a l s e results. to the elements of each sequence. For e x a m p l e , i n t h e case of Hn we m i g h t s u b t r a c t from each element o f the b e l i e f sequence, t h e corresponding element generated by Hn, o b t a i n i n g 2. Elementary I n d u c t i v e Methods We f i r s t d e s c r i b e two b a s i c methods of i n d u c t i v e r e a s o n i n g , and t h e n compare them. 2 . 1 The Method o f G e n e r a l i z a t i o n w i t h B e l i e f s One p o p u l a r t h e o r y of i n d u c t i v e r e a s o n i n g (Meltzer [ 1 9 6 9 ] , P l o t k i n [ 1 9 6 9 , 1971],Popplestone [ 1 9 6 9 ] , Feldman[1969], Hardy[1976]) suggests t h a t it is basically generalization.* Consider f o r example the Tower of Hanoi p r o b l e m . Using t h e r e c u r s i v e e q u a t i o n s we can deduce c l o s e d - f o r m s o l u t i o n s f o r n u m e r i c a l i n s t a n c e s o f Hn. HO = 0 HI = HO+1 = 2.04-1 = 1 H2 - 2H1+1 = 2.1+1 = 3 H3 - 2H2+1 = 2.3+1 = 7 H4 = 2H3+1 = 2 . 7 + 1 - 1 5 H5 - 2H4+1 = 2.15+1 = 31 H6 - 2H5+1 = 2.31+1 = 63 I suspect the reader has a l r e a d y induced a c l o s e d form s o l u t i o n f o r Hn, b u t l e t u s i n v e s t i g a t e how t h i s m i g h t be done. From H0=0 H l = 1 H2=3 H3=7 H4=15 H5=31 H6=63 we w i s h to f i n d * * F i r s t l e t u s note t h a t a l e a s t g e n e r a l g e n e r a l i x a t i o n method such as P l o t k i n [1969,1971] does n o t work because the l e a s t g e n e r a l g e n e r a l i z a t i o n : Furthermore,even if we i n c l u d e an a l g e b r a i c matching f a c i l i t y s i m i l a r t o t h a t used i n Feldman [1969] and Hardy [ I 9 7 6 ] * * * w h i c h a l l o w s u s t o t r y t o r e l a t e t h e arguments o f t h e H n f u n c t i o n t o i t s v a l ues b y a d d i n g , m u l t i p l y i n g , s u b t r a c t i n g , a n d d i v i d i n g , we s t i l l would n o t o b t a i n a s o l u t i o n . For example, adding one to t h e sequence of v a l u e s of Hn g i v e s : T h i s would g i v e us t h e know- and v i a our b e l i e f , we induce t h a t : Hn = 2 n - 1 which i n f a c t i s t r u e . There i s , however, another i n d u c t i v e method w h i c h , o t h e r t h a n f o r p o s s i b l y the t r i g g e r i n g o f t h e b e l i e f t h a t t h e c l o s e d form s o l u t i o n might i n v o l v e an e x p e n e n t i a l f u n c t i o n of base 2, does n o t r e a l l y need to produce those i n s t a n c e s of t h e Hn function. Nor does it need to go t h r o u g h any generalization steps. We c a l l t h i s method, t h e Method of Successive Refinement. 2.2 The .Method of Successive Refinement The b a s i c i d e a of t h e Method of Success Re finement i s t o make a n i n i t i a l ( i n c o r r e c t ) guess a s t o what i s t h e c l o s e d form s o l u t i o n , l e t a theorem p r o v e r t r y t o prove t h i s guess, and when i t f a i l s t o prove i t , g o back and t r y t o modify each branch of t h e p r o t o c o l on which n had been produced. For example, l e t us suppose t h a t we b e l i e v e a s o l u t i o n to Hn m i g h t i n v o l v e an exponent i a l f u n c t i o n t o a power o f t w o : ( B e l i e f Hn i n v o l v e s 2 n ) I n o t h e r words, l e t u s f i r s t form t h e h y p o t h e s i s that; Hn - 2 n and see what a d e d u c t i v e system w i l l do to t h i s expression. I n d u c t i n g on n we g e t * : HO+1=1 Hl+1=2 H2+l=4 H3+l=8 H4+l=16 H5+l=32 H6+1=64 But s t i l l the r e m a i n i n g l e a s t g e n e r a l g e n e r a l i z a t i o n is false. So how can t h e c l o s e d form s o l u t i o n be induced? L e t u s suppose t h a t t h e i n d u c t i v e system has a v a i l a b l e a b e l i e f t h a t any f u n c t i o n which produces t h e sequence o f v a l u e s 1 , 2 , 4 , 8 , 1 6 , 32, f o r t h e arguments O , 1 , 2 , 3 , 4 , 5 , i s p r o b a b l y equal t o t h e e x p o n e n t i a l f u n c t i o n o f base 2 : ( B e l i e f 1 , 2 , 4 , 8 , 16, 3 2 i s p r o b a b l y 2 n ) Then g i v e n t h i s b e l i e f a system m i g h t t r y t o com pare t h e sequence 1 , 2 , 4 , 8 , 1 6 , 3 2 t o t h e s e quence o f v a l u e s g i v e n b y t h e r e c u r s i v e f u n c t i o n by applying various algebraic operations pairwise * We c o n s i d e r analogy to be an e s s e n t i a l component o f t h e method o f g e n e r a l i z a t i o n a s here d e s c r i b e d , and hence do n o t d e f i n e a s e p a r a t e : method of analogy. * * V i s our symbol f o r a l l . * * * In our case, however, we work d i r e c t l y on t h e numbers themselves r a t h e r t h a n a p p l y i n g a l g e b r a i c o p e r a t i o n s t o t h e number o f occurrences o f symbols such a s : t h e successor symbol. A l r e a d y we are in t r o u b l e as t h e d e d u c t i v e system shows t h a t our h y p o t h e s i s is f a l s e , on the base case. Can we m o d i f y our h y p o t h e s i s to induce a b e t t e r one? A n a l y s i n g our p r o o f we see t h a t if the e x p r e s s i o n 0 = 1 were r e p l a c e d by 0 = 1 - 1, then o and n o t n would be produced. This means t h a t HO ■ 1 would have to be HO = 1 - 1, HO = 2 would have to be HO = 2 - 1, and Hn = 2 n would have to be hn = 2 n - 1. G i v i n g o u r new h y p o t h e s i s to a d e d u c t i v e system we get: * ■ is our symbol f o r t r u e ; a is our symbol f o r f a l s e , and >- is our symbol f o r i m p l i c a t i o n . The l e f t branch i s t h e base o f t h e i n d u c t i o n , and t h e r i g h t branch i s t h e i n d u c t i o n s t e p . S p e c i a l i z e d Systems-U: Brown which we deduce to be t r u e . We see t h e n t h a t we can o b t a i n a p r o o f by mod i f y i n g a p r e v i o u s unsuccessful attempt a t p r o v i n g a theorem. T h i s leads n a t u r a l l y t o the q u e s t i o n a s t o what i s the space o f a l l such m o d i f i c a t i o n s ? A l t h o u g h , p o t e n t i a l l y t h i s space may be q u i t e l a r g e , we w i l l o n l y c o n s i d e r two simple m o d i f i c a t i o n s : 1) a d d i t i o n of a c o n s t a n t to an e q u a t i o n in o r d e r t o make i t t r u e 2) m u l t i p l i c a t i o n of a c o n s t a n t to an a d d i t i v e p a r t o f a n e q u a t i o n i n order t o make i t t r u e . We have j u s t seen an example of (1) in o b t a i n i n g a s o l u t i o n to the Hanoi f u n c t i o n . An example of (2) a p p l i e d t o t h e f a l s e e q u a t i o n 1 - / 5 would b e t o m u l t i p l y / 5 b y 1//5 and an example of (2) a p p l i e d to an a d d i t i v e p a r t o f the f a l s e e q u a t i o n 0 - 1 + /5 would be to m u l t i p l y t h e a d d i t i v e p a r t 1 by - 1//5 Note t h a t m o d i f i c a t i o n s are o n l y made to t h e r i g h t hand s i d e of an e q u a t i o n . The reason f o r t h i s i s t h a t t h a t side c o n t a i n s t h e c l o s e d - f o r m s o l u t i o n whereas the o t h e r side merely c o n t a i n s the recursive f u n c t i o n . The reader w i l l see in the method of success i v e r e f i n e m e n t an echo of M e l t z e r ' s [1969] hypo t h e s i s t h a t i n d u c t i v e reasoning i s i n v e r s e deduc tion. But in our case, t h i s is not so much a semantical hypothesis: if A->B t h e n A may be i n duced from B , a s i t i s a n o t i o n o f search s t r a t e g y i n t h e sense t h a t i f B i s deduced from A b y a p p l y i n g t h e i t e m * A -> B to A, then A is induced from B b y a p p l y i n g t h e i t e m i n the o p p o s i t e d i r e c t i o n . We have seen how the c l o s e d - f o r m s o l u t i o n f o r Hn may be o b t a i n e d from the b e l i e f t h a t the s o l u t i o n i n v o l v e s a n e x p o n e n t i a l f u n c t i o n o f base t w o . Note t h a t t h i s b e l i e f i s s t r o n g e r than what i s necessary, and t h a t the b e l i e f t h a t some a r b i t r a r y exponential function a is involved s u f f i c e s : That i s , i f 2 i s r e p l a c e d b y a i n the p r e v i o u s p r o t o c o l s , e s s e n t i a l l y the same r e s u l t w i l l b e o b t a i n e d . 2.3 Comparison of the two Methods So f a r , we have found t h a t simple g e n e r a l i z a t i o n methods are n o t s u f f i c i e n t and t h a t s o p h i s t i cated b e l i e f s seem to be used in i n d u c t i v e r e a s o n ing. We have c a s t doubt on t h e suggestion t h a t i n d u c t i v e reasoning i s o n l y g e n e r a l i z a t i o n b y d e s c r i b i n g another t e c h n i q u e , the method o f success i v e r e f i n e m e n t , which seems to be more p o w e r f u l (because it needs a weaker b e l i e f to produce t h e solution). One advantage of the g e n e r a l i z a t i o n method is the p o s s i b i l i t y o f t r i g g e r i n g the 2 n b e l i e f b y a n a l g e b r a i c matching o f the 1 , 2 , 4 , 8 , 16, 32, s e quence to the sequence generated by the Hanoi function: Hn. A second advantage i s t h a t i t i s *<-> i s our symbol f o r i f f ( i f and o n l y i f ) . q u i t e easy t o e x p l a i n how the b e l i e f , t h a t a f u n c t i o n whose i n i t i a l i n s t a n c e s are 1 , 2 , 4 , 8 , 16, 32, i s the e x p o n e n t i a l o f base 2 : ( B e l i e f 1 , 2 , 4 , 8 , 1 6 , 3 2 i s p r o b a b l y 2n) n was produced by s i m p l y i n s t a n t i a t i n g n in 2 to s u c c e s s i v e l y 0 , 1 , 2 , 3 , 4 , 5 whereas i t does n o t seem q u i t e as easy to e x p l a i n the p r o d u c t i o n of the i n i t i a l h y p o t h e s i s t h a t Hn i n v o l v e d some e x ponential function: ( B e l i e f Hn i n v o l v e s a n ) Are we f o r example to b e l i e v e t h a t the c l o s e d - f o r m s o l u t i o n o f every r e c u r s i v e f u n c t i o n i n v o l v e s a n e x p o n e n t i a l f u n c t i o n or what? Although i t i s e a s i e r t o e x p l a i n the o r i g i n s o f a b e l i e f o f the f o r m : ( B e l i e f 1 , 2 , 4 , 8 , 16, 3 2 i s p r o b a b l y 2 n ) than o f the f o r m : ( B e l i e f Hn i n v o l v e s a ) w e note t h a t i f a r e c u r s i v e f u n c t i o n i s n o t a c t u a l l y equal to a simple a l g e b r a i c f u n c t i o n such as 2 then i t i s q u i t e improbable t h a t the necessary b e l i e f o f t h i s f i r s t form c o u l d b e a v a i l a b l e t o b e used in o b t a i n i n g the c l o s e d - f o r m s o l u t i o n . We w i l l now g i v e an example of such a f u n c t i o n and suggest t h a t the c l o s e d - f o r m s o l u t i o n s o f most r e c u r s i v e f u n c t i o n s are o f t h i s c h a r a c t e r . This example i s i n t e r e s t i n g because i t supports the view t h a t i n d u c t i v e reasoning based o n l y on the method o f g e n e r a l i z a t i o n even w i t h s o p h i s t i c a t e d b e l i e f s , i s n o t s u f f i c i e n t , and t h a t o t h e r methods are a l s o needed. Our example is the F i b o n a c c i f u n c t i o n . Using i t s r e c u r s i v e equations we deduce: FO = 0 F1 = 1 F2 = F l + FO = 1 + 0 = 1 F3 = F2 + F l = 1 + 1 = 2 F4 = F3 + F2 = 2 + 1 = 3 F5 = F4 + F3 - 3 + 2 = 5 F6 = F5 + F4 = 5 + 3 = 8 F7 = F6 + F5 = 8 + 5 = 13 Thus from F0=0 F l = l F2-1 F3=2 F4=3 F5=5 F6=8 F7=13 we wish to f i n d : Fn = ? But t h e r e is no simple a l g e b r a i c f u n c t i o n which produces a n i n i t i a l sequence a n y t h i n g l i k e 0 , 1 , 1 , 2, 3, 5, 8, 13. In o t h e r words t h e r e c o u l d n o t be any b e l i e f of the f o r m : ( B e l i e f a 1 . . . . a m is p r o b a b l y a ) which would b e h e l p f u l i n s o l v i n g t h i s problem. For a f t e r a l l w e cannot expect t o have b e l i e f s about every a l g e b r a i c f u n c t i o n i n our system; o n l y the simple ones. We can see t h a t the c l o s e d - f o r m s o l u t i o n i s not simple, b y a c t u a l l y e x h i b i t i n g i t . C o n c u r r e n t l y we w i l l take the o p p o r t u n i t y to show how t h i s c l o s e d - f o r m s o l u t i o n c o u l d be o b t a i n e d by the method of successive r e f i n e m e n t u s i n g t h e b e l i e f t h a t t h e s o l u t i o n i n v o l v e s two e x p o n e n t i a l functions: ( B e l i e f Fn i n v o l v e s a , b ) where a # 0 can b # 0. From t h i s b e l i e f we form an i n i t i a l h y p o t h e s i s that: Fn = an + bn and see what our d e d u c t i v e system w i l l do to t h i s expression. I n d u c t i n g on n t w i c e , because Fn S p e c i a l i z e d S y s t e m s - 4 : Brown 846 does n o t r e c u r s e on Fn+1, we o b t a i n ; Working upwards we see t h a t the f i v e p r e v i o u s l i n e s in the p r o o f must have been something l i k e : So f a r we have been able to induce a new hypothesii which w i l l p r o b a b l y make the F l - b a s e branch of the proof r e s u l t in . B u t , does t h i s change the r e s u l t of w e had p r e v i o u s l y o b t a i n e d i n the i n d u c t i o n step branch o f t h e p r o o f ? Since i n d u c t - The i n d u c t i o n two base cases are t h e s i s to induce a A n a l y s i n g the s t e p seems to be t r u e , but the false. Can we modify our hypob e t t e r one? Fl base case we see t h a t if the Fn+2=aFn+l+(Fn+l-aFn)b and since the t h i r d l i n e i s i d e n t i c a l t o our p r e v ious t h i r d l i n e we see t h a t the i n d u c t i o n step branch o f our p r o o f w i l l s t i l l r e s u l t i n ■ . Of course we d o n ' t a c t u a l l y have to analyse our p r o o f s t e p s downward, as we could simply apply our d e d u c t i v e system to such a step and see what i t does. For example, t o see t h a t Fn+1 = aFn + ( ( b - a ) / / 5 ) b n r e s u l t s in = a l l we need d o i s t o apply our d e d u c t i v e system t o i t . We have now produced a m o d i f i c a t i o n which r e s u l t s i n a o n b o t h the F l base, and i n d u c t i o n step branches of our p r o o f . Only the FO base step r e mains. The FO base branch r e s u l t e d in o, so we know t h a t some s o r t of m o d i f i c a t i o n is what was needed to make t h e FO base branch r e s u l t in ■: We f i r s t check to see if the m o d i f i c a t i o n induced from the F l base branch w i l l s u f f i c e t o make t h i s branch r e s u l t in : in (1 = / 5 ) had been d i v i d e d by √ 5 then ■ would have been produced. T h i s means t h a t t h e base case would have had to have looked something l i k e : Fl=aFO+((b-a)//5)b Fl=a-0+((b-a)/5)-l Fl-0+(b-a)/√5 Fl=(b-a)//5 1= (b-a)/√5 1= ( ( l - √ 5 ) / 2 - ( l + √ 5 ) / 2 ) / √ 5 1= 2√5/2√5 1-1 D * In contemporary d e d u c t i v e systems (Brown [1976B, 1 9 7 7 ] , Boyer [1975]) the e q u a l i t y o r u n i f i c a t i o n items would end up r e p l a c i n g a l l occurrences of say " a " by b - 1 . A system used i n successive r e f i n e ment should n o t do t h i s because if Fn = a n + b n is f a l s e a might n o t equal b - 1, and then we would n o t want t o propagate t h i s f a l s i t y i n t o the branch o f the p r o o f which i s t h e i n d u c t i o n s t e p which may a f t e r a l l b e t r u e a s i n t h i s example. The reason we p r e f e r to have n d e r i v e d on the branch of t h e p r o o f which i s the i n d u c t i o n base r a t h e r than the i n d u c t i o n step i s t h a t i t i s a s i m p l e r branch and w i l l b e e a s i e r t o analyse why i t produced n , i n o r d e r to induce a h y p o t h e s i s . is true. Replacing a and b by the a l g e b r a i c terms t h a t we have found them to be in our p r o o f we f i n d t h a t t h e c l o s e d form s o l u t i o n f o r the F i b o n a c c i f u n c tion is: S p e c i a l fzed S y s t e m s - 4 : Brown 847 Thus we see t h a t a l t h o u g h it is p l a u s i b l e t h a t we might b e able t o induce t h i s s o l u t i o n b y the i n d u c t i v e method o f successive r e f i n e m e n t , i t i s n o t v e r y p l a u s i b l e t h a t we c o u l d have induced t h i s s o l u t i o n by the g e n e r a l i z a t i o n method. The reason f o r t h i s , a s w i l l b e r e c a l l e d , i s because the gen e r a l i z a t i o n method would r e q u i r e p r i o r b e l i e f s that: And it s i m p l y does n o t seem p l a u s i b l e t h a t such b e l i e f s would b e a v a i l a b l e . T h i s technique o f u s i n g e x i s t e n t i a l f u n c t i o n s has been used by B i b e l [ 1 9 7 6 ] ( i n our case c o n s t a n t s : a,b,α,β).Because it is so powerful t h a t we s h a l l r a i s e i t t o the s t a t u s o f a t h i r d i n d u c t i v e method which we s h a l l c a l l : The supplementary method of existential functions. I t should b e noted t h a t t h i s technique i s n o s u b s t i t u t e f o r t h e more gen e r a l method o f successive r e f i n e m e n t , f o r i t s power depends on knowledge possessed by the d e d u c t i v e system. I n t h e p r o t o c o l s u s i n g t h e method o f e x i s t e n t i a l f u n c t i o n s we have assumed the a b i l i t y t o solve equations o f the f o r m : f - 0 f o r an a r b i t r a r y e x i s t e n t i a l constant. This knowledge was n o t assumed when n o t u s i n g t h i s method. We s h a l l see more of t h i s method in sec t i o n 3. 2.5 Summary In summary then we have d e s c r i b e d two b a s i c i n d u c t i v e methods and one supplementary method; and have shown t h a t t h e e f f e c t i v e n e s s of each method depends o n the a v a i l a b i l i t y o f p a r t i c u l a r b e l i e f s . We have suggested t h a t the b e l i e f s needed by t h e g e n e r a l i z a t i o n method would o n l y b e a v a i l a b l e i f t h e r e c u r s i v e f u n c t i o n i s equal t o some v e r y simple a l g e b r a i c f u n c t i o n , such a s i s the case w i t h the Tower of Hanoi f u n c t i o n . For most o t h e r r e c u r s i v e f u n c t i o n s such as the F i b o n a c c i f u n c t i o n s we have suggested t h a t the b e l i e f s needed b y the g e n e r a l i z a t i o n method would not be a v a i l a b l e . In s e c t i o n 3 we d e s c r i b e how the b e l i e f s need ed by the method of successive r e f i n e m e n t might be a u t o m a t i c a l l y produced. 2.4 The Supplementary Method of E x i s t e n t i a l Functions We have one f i n a l p o i n t to make about the F i b o n a c c i example: If we had a s l i g h t l y more s o p h i s t i c a t e d b e l i e f a s t o what the c l o s e d - f o r m s o l u t i o n might b e , then our d e d u c t i v e system would b e a b l e t o o b t a i n the s o l u t i o n i n a v e r y d i r e c t manner. L e t us suppose t h a t we have the b e l i e f t h a t t h e c l o s e d - f o r m s o l u t i o n o f the F i b o n a c c i i n v o l v e s a l i n e a r combination of two non-zero f u n c tions : ( B e l i e f Fn i n v o l v e s α a n + βb n ) Then the h y p o t h e s i s i s : = αa n +βb n A s o l u t i o n is o b t a i n e d by i n d u c t i n g t w i c e on n: 3. Temporal I n d u c t i v e Methods We now d e s c r i b e methods of i n d u c t i v e reasoning based on i n f o r m a t i o n o b t a i n e d from t h e s o l u t i o n s of p r e v i o u s l y solved problems. Such methods are c a l l ed temporal i n d u c t i v e methods. There are two temporal i n d u c t i v e methods, d i s t i n g u i s h e d by t h e t y p e of i n f o r m a t i o n on which they are based. The f i r s t temporal method i s based s o l e l y o n i n f o r m a t i o n o b t a i n e d from the theorem which expresses a p r e v i o u s l y solved problem, whereas t h e second temporal method is based on i n f o r m a t i o n o b t a i n e d from the p r o o f of a p r e v i o u s l y solved problem. R e f e r r i n g back to s e c t i o n 2.5 we s h a l l see in s e c t i o n 3.2 how t h e second temporal method may be a p p l i e d t o p r o d u c i n g the k i n d o f b e l i e f s needed b y t h e method of successive r e f i n e m e n t . 3 . 1 The Temporal Method based on Theorems The b a s i c idea of the temporal method based on theorems i s f o r any g i v e n problem F t o t r y t o f i n d a s i m i l a r problem H which has a l r e a d y been s o l v e d , and then t o use something s i m i l a r t o t h e s o l u t i o n f o r H as a h y p o t h e s i s f o r t h e s o l u t i o n of F. For example l e t H be the Tower of Hanoi p r o b lem whose s o l u t i o n we d i s c o v e r e d in S e c t i o n 2, and l e t F be t h e F i b o n a c c i f u n c t i o n whose s o l u t i o n we are t r y i n g t o f i n d . The theorem which expresses t h e s o l u t i o n t o t h e Hanoi problem i s t h e n : (Vn H ( n + l ) = 2 ( H n ) + l A H O 0 ) -> Hn=2 n -1 and t h e (as y e t incomplete) theorem which expresses S p e c i a l i z e d S y s t e m s - 4 : Brown 848 We see t h a t t h e r e is no reasonable analogy t h a t we can make which w i l l h e l p us to s o l v e F. For e x ample, if we form the analogy t h a t m is n - 1 from (Hn+1 Fm+2), then we might c o n j e c t u r e t h a t : Fm=2m-1 -1 which is f a l s e . In any case, so much syntax has been l e f t unexplained b y t h i s analogy ( f o r example the 2. , + 1 , HO = 0, +Fm, and Fl = 1) t h a t we can have no confidence in t h i s c o n j e c t u r e anyway. Furthermore even i f our g e n e r a l i z a t i o n system were s o p h i s t i c a t e d enough to r e w r i t e the H theorem as the e q u i v a l e n t theorem: (VnH(n+2)=2H(n+l)+l ' H l « l ^ H O = 0 ) + Hn=2 n -1 (VroF(m+2)-F(ra+l)+Fm / F l - 1 > FO=0) + Fm=? The c l o s e s t analogy would s t i l l not e x p l a i n the 2* , + 1 , and +Fm. The problem here is t h a t H and F are so d i s s i m i l a r t h a t no immediate analogy can be made. 3.2 Temporal Method based on Proofs The b a s i c idea of the temporal method based on p r o o f s is as f o l l o w s : 1) F i r s t u s i n g the temporal method based on t h e o r ems f i n d a problem H which is s i m i l a r to the p r o b lem F you are t r y i n g to s o l v e and c o n j e c t u r e a solution for F. 2) Using the d e d u c t i v e system produce t h e p r o o f of H and a p r o t o c o l of F w i t h t h a t h y p o t h e s i s . 3 ) F i n a l l y compare t h e p r o o f w i t h the p r o t o c o l t o f i n d o u t why no s o l u t i o n was o b t a i n e d , and form a new h y p o t h e s i s . Suppose, now t h a t we are t r y i n g to f i n d a s o l u t i o n to the F i b o n a c c i f u n c t i o n F, g i v e n t h a t we a l r e a d y know t h e s o l u t i o n to t h e Tower of Hanoi f u n c t i o n H. We s h a l l use the p r o o f of the s o l u t i o n of H which is given as described in section 2 . 2 , s t a r t i n g w i t h : 3a Vn Hn = a n - 1 The h y p o t h e s i s f o r t h e s o l u t i o n o f F i s 3 a Vn Fn - a n - l (We c o u l d throw in a few e x i s t e n t i a l c o n s t a n t s , f o r example: Fn = a.a n - 3 , b u t it w o n ' t make any d i f ference a t t h i s s t a g e . ) Using our d e d u c t i v e system we o b t a i n the f o l lowing p r o t o c o l : We now compare t h i s p r o t o c o l w i t h the p r o o f of Hn. We see t h a t in b o t h cases t h e i n d u c t i o n p r i n c i p l e was f i r s t a p p l i e d . We then see t h a t t h e steps in the base case of p r o o f and p r o t o c o l were t h e same, and t h a t the f i r s t few steps on the i n d u c t i o n s t e p branch of the p r o o f and p r o t o c o l were the same. In f a c t we f i n d t h a t t h e y d i f f e r e x a c t l y where H(n+1) is replaced by 2(Hn)+l H(n+l)=a(Hn)+a-l T h i s then is t h e problem. On F the theorem p r o v e r i n d u c t s because i t c a n ' t r e c u r s e , because F recurses on n+2 n o t n + 1 , whereas H immediately recurses to obtain a solution. So g r a n t e d t h a t F recurses on n+2 and t h a t the theorem proven i n d u c t s t w i c e the q u e s t i o n , i s : why i s not a s o l u t i o n o b t a i n e d a f t e r the second i n d u c tion? Let us compare the steps b e g i n n i n g w i t h the second i n d u c t i o n i n F t o t h e steps i n Hn: 3a Vn Hn = an - 1 3a Vn. F(n+1) = aFn+a - 1 We see t h a t Hn i n v o l v e s some term " a " e x p o n e n t i a t e d by t h e i n d u c t i o n v a r i a b l e n. Comparing Hn to Fn+1 t h i s leads u s t o suspect t h a t Fn+1 might a l s o i n v o l v e some term e x p o n e n t i a t e d by the i n d u c t i o n term n+1. Thus we would hypothesize t h a t Fn+1 i n v o l v e s some term b or r a t h e r than Fn i n v o l v e s some term b . The reader should bear in mind t h a t the hypothesis is not a f o r t h i s a would c l a s h w i t h the bound v a r i a b l e a a l r e a d y o c c u r i n g in the above Fibonacci expression. The p o i n t i s t h a t the " a " i n the Hanoi e x p r e s s i o n and " a " i n the F i b o n a c c i expression are two d i s t i n c t bound v a r i a b l e s , w h i c h do n o t n e c e s s a r i l y r e f e r to t h e same number. There are two o t h e r i n d i c a t i o n s t h a t F n i n v o l v e s a term of the form b . I n d u c t i n g on n in each ca^se we get r e s p e c t i v e l y t h e base cases: Note t h a t in the p r o o f of H a skolem f u n c t i o n d i s appears by having a r e p l a c e d by 1 whereas in the p r o t o c o l of F no skolem f u n c t i o n disappears in t h i s manner. Here then is a second i n d i c a t i o n t h a t a term of the form b or r a t h e r b is needed in t h e Fibonacci p r o t o c o l . F i n a l l y , b y comparing the i n d u c t i o n steps o f H and F we note t h a t in H t h e e q u a l i t y i t e m r e p l a c e d a by an e x p r e s s i o n , whereas in F it merely r e p l a c e d " a " by an e x p r e s s i o n . Here then is a t h i r d i n d i c a t i o n t h a t F n i n v o l v e s a n expression o f the form b (where b is n o t n e c e s s a r i l y equal to a ) . Thus, f o r t h r e e reasons we are lead to the b e l i e f t h a t Fn i n v o l v e d some term b where b is n o t necess a r i l y a. We now go back and modify our o r i g i n a l S p e c i a l i z e d S y s t e m s - 4 : Brown 849 belief: t h a t Fn i n v o l v e s a : ( B e l i e f Fn i n v o l v e s a ) to the new b e l i e f t h a t Fn i n v o l v e s b o t h a and b : ( B e l i e f Fn i n v o l v e s a + b ) And t h i s new b e l i e f , as we have a l r e a d y seen in s e c t i o n 2 . 3 , s u f f i c i e s t o f i n d the c l o s e d - f o r m s o l u t i o n t o the F i b o n a c c i f u n c t i o n . 3.3 Summary In summary we have d e s c r i b e d two temporal i n d u c t i v e methods, one based on comparing the s t a t e ment of a problem w i t h the statement of a s i m i l a r p r e v i o u s l y solved problem, and the o t h e r based on comparing the unsuccessful attempts to solve a problem w i t h the p r o o f of an analogous problem. In e i t h e r case we have found t h a t i n d u c t i v e reasoning depends on the a b i l i t y to make use of p r e v i o u s s o l u tions. We have a l s o seen how t h e type of b e l i e f need ed to apply t h e method of succession r e f i n e m e n t to the F i b o n a c c i problem might be generated. 4 . Conclusion We have i n v e s t i g a t e d and d e s c r i b e d s e v e r a l f e a s i b l e methods of i n d u c t i v e reasoning which are u s e f u l i n the domain o f s o l v i n g d i f f e r e n c e equations. We s t r e s s t h a t these methods use no mathematical knowledge in terms of lemmas, s t r a t e g i e s or r u l e s o t h e r than t h a t which would be a v a i l a b l e to a simple a l g e b r a theorem prover which has o n l y the f o l l o w i n g rules*. 1) Rules to s i m p l i f y a l g e b r a i c e x p r e s s i o n s . 2) The l o g i c a l r u l e s needed to p u t formulas in c o n j u n c t i v e and d i s j u n c t i v e normal f o r m . 3) The two e q u a l i t y r u l e s : 4) A mathematical i n d u c t i o n p r i n c i p l e . 5) Rules to equate t h e c o e f f i c i e n t s of v a r i o u s types of expressions. (This a b i l i t y i s needed b y t h e method o f e x i s t e n t i a l f u n c t i o n s ) Of c o u r s e , if we were to a l l o w the use of s o p h i s t i c a t e d mathematical techniques we c o u l d e a s i l y solve t h e problems we have considered in t h i s paper. In p a r t i c u l a r , we c o u l d implement a theorem p r o v e r based e i t h e r o n the r u l e s o f the f i n i t e d i f f e r e n c e c a l c u l u s (Spiegel [ 1 9 7 1 ] , Jordan [ 1 9 6 5 ] ) , or on the method o f g e n e r a t i n g f u n c t i o n s ( L i n [ 1 9 6 8 ] , Bekenbach [ 1 9 6 4 ] , Knuth [ 1 9 6 9 ] , Jordan [ 1 9 6 5 ] ) . But t h i s is j u s t what we do n o t want to d o , f o r t h i s would n o t e x p l a i n how t h e mathematical knowledge embedded in these techniques was a c t u a l l y created. In our view of mathematics, we see t h a t t h i s knowledge i s b a s i c a l l y c r e a t e d b y t r y i n g t o solve a number of problems using o n l y o n e ' s g e n e r a l i n d u c t i v e a b i l i t i e s and the c u r r e n t s t a t u s o f o n e ' s deductive a b i l i t i e s . Then one g e n e r a l i z e s and organizes the methods t h a t one has found u s e f u l in s o l v i n g these problems i n t o some s o r t of deductive c a l c u l u s , such a s f o r example the t h e o r y o f f i n i t e d i f f e r e n c e equations or t h e method of g e n e r a t i n g functions. One then adds t h i s c a l c u l u s to o n e ' s deductive a b i l i t i e s , h e n c e f o r t h making what were d i f f i c u l t problems q u i t e easy, thus a l l o w i n g one t o t r y t o s o l v e problems i n more d i f f i c u l t domains by repeating t h i s process. Acknowledgements We thank P r o f e s s o r B. M e l t z e r f o r c r i t i c i z i n g a d r a f t „ o f t h i s paper and f o r a r r a n g i n g f o r Dr. Tarnlund t o v i s i t the Department o f A r t i f i c i a l I n t e l l i g e n c e so t h a t we could c o l l a b o r a t e on t h i s research. References B e c k e n b a c h , E . F . ( e d i t o r ) A p p l i e d C o m b i n a t o r i a l Mathe m a t i c s , U n i v . of C a l . , Eng. and P h y s i c a l Sciences E x t e n t i o n s S e r i e s , John Wiley & Sons, I n c . 1964. Bibel,W. "Synthesis of S t r a t e g i c D e f i n i t i o n s „ a n d t h e i r c o n t r o l " , Report 7610. Tech. U n i v . Munchen, 1976. B o y e r , R . S . , Moore,JS. " P r o v i n g Theorems about LISP F u n c t i o n s " , Proceedings IJCAI3 and J. of ACM,1975. Brown,F.M. "The Role of E x t e n s i b l e Deductive Systems in Mathematical Reasoning", Proceedings of AISB Summer Conference, Edinburgh, 1976A. Brown,F.M. "Doing A r i t h m e t i c w i t h o u t Diagrams", t o appear i n J n l . o f A r t i f i c i a l I n t e l l i g e n c e , a l s o DAI Research Report No. 16A,1976B. Brown,F.M. "Towards the Automation of Set Theory and i t s L o g i c " , DAI Research Report No. 34,1977. Feldman, J . , e t a l . "Grammatical Complexity and I n f e r e n c e " , Tech. Report No. CS125,Stanford AI P r e f e c t , S t a n f o r d U n i v . , 1969. Hardy,S. " S y n t h e s i s of LISP F u n c t i o n s from Examples" Proceedings of AISB Summer Conference, 1976. Jordan,C. C a l c u l u s o f F i n i t e D i f f e r e n c e s , Chelsea P u b l i s h i n g C o . , New York, 17.Y. 1965, L i b r a r y of Congress Catalog Card No.58-27786. Knuth,D.E. Fundamental A l g o r i t h m s : The A r t of Com p u t e r Programming, V o l . 1 . , p-86,Addison Wesley P u b l i s h i n g Company, I n c . , 1969. L i n , C . L . I n t r o d u c t i o n t o C o m b i n a t o r i a l Mathematics, McGraw-Hill I n c . , 1968. Luger,G. "The Use of the s t a t e space to r e c o r d t h e b e h a v i o r a l e f f e c t s of subproblems and symmetries in the Tower of Hanoi P r o b l e m " , I n t . J . M a n Machine S t u d i e s , V o l . 8 , p 4 1 1 - 4 2 1 , 1976. M e l t z e r , B . "Power A m p l i f i c a t i o n f o r Theorem-Proving, P a r t 2: A h y p o t h e t i c s d e d u c t i v e approach to p r o gramming i n d u c t i o n " . MI5,1969. P l o t k i n , G . D . "A note on I n d u c t i v e G e n e r a l i z a t i o n " , MI5, 1969. P l o t k i n , G . D . "A F u r t h e r Note on I n d u c t i v e G e n e r a l i z a t i o n " , MI6, 1971. P o l y a , G . Mathematical D i s c o v e r y , V o l . I , I I , John Wiley & Sons, I n c . 1967. Polya,G. I n d u c t i o n and Analogy in Mathematics, Mathematics and P l a u s i b l e R e a s o n i n g , V o l . I . O x f o r d U n i v e r s i t y P r e s s , London, 1968A. Polya,G. P a t t e r n s o f P l a u s i b l e I n f e r e n c e , Mathe m a t i c s and P l a u s i b l e Reasoning, V o l . 1 1 . Oxford U n i v e r s i t y Press, London, 1968B. Popper,K.R. The Logic of S c i e n t i f i c Discovery , Hutchinson, 3rd e d i t i o n , 1968. P o p p l e s t o n e , R . J . "An Experiment i n Automatic I n d u c t i o n " , MIS, 1969. Spiegel,M.R. F i n i t e D i f f e r e n c e s and D i f f e r e n c e E q u a t i o n s . McGraw-Hill I n c . , 1971. * These r u l e s are embedded in an algebra theorem prover which one of t h e a u t h o r s (Brown) implemented about a year ago. S n p c i a l i z e d S v s t e m s - 4 : Brown 850
© Copyright 2026 Paperzz